

Hochschule Augsburg University of Applied Sciences

Fakultät für Architektur und Bauwesen

An der Hochschule 1 86161 Augsburg

Modulhandbuch Studiengang Master Bauingenieurwesen

Studienangebot Technische Hochschule Augsburg

zur SPO vom 09.08.2019

Wintersemester 2025

17. Oktober 2025

Inhaltsverzeichnis

Inhaltsverzeichnis	2
Vertiefte Statik und FEM	3
Digitales Planen und Bauen	5
Bauwerke der Infrastruktur I	7
Bauwerke der Infrastruktur II	9
Spezialtiefbau und Tunnelbau	11
Verkehrswegebau und Erhaltungsmanagement	13
Wasserwirtschaft	15
Unterhalt, Betrieb und Rückbau	17
Interdisziplinäres Projekt in Teamwork oder BIM-Projekt	19
Wahlpflicht module	21
Masterarbeit mit Masterseminar	

Modulbezeichnung	Vertiefte Statik und FEM	Kennziffer T1
Zuordnung zum Curriculum	Studiengang "Bauingenieurwesen"	
	Pflicht	
Lehrveranstaltungen	T1.1 Vertiefte Statik	
	T1.2 Finite Elemente Methode	
Studienplansemester	1. Semester	
Angebotsturnus	jährlich	
Dauer des Moduls	1 Semester	
Kreditpunkte	5	
Veranstaltungsform	Seminaristischer Unterricht mit integrierten Übungen	
Arbeitsaufwand	60 h Präsenzzeit = (4 sws) * 15 h/sws	
	90 h Eigenstudium	
	150 h Gesamtaufwand = 5 Kreditpunkte x 30	h/KP
Modulverantwortlicher	Prof. DrIng. Norman Werther	
Dozent	Prof. DrIng. Norman Werther, LB	
Sprache	Deutsch	
Voraussetzungen nach		
Prüfungsordnung		
Empfohlene Voraussetzungen		
Studien-/ Prüfungsleistungen/	Schriftliche Prüfung	
Prüfungsformen		

Modulziele /	Wird ergänzt
Angestrebte	
Lernergebnisse	
Modulinhalte	Wird ergänzt
Medienformen	Wird ergänzt
Literatur	Wird ergänzt

Modulbezeichnung	Digitales Planen und Bauen	Kennziffer T2
Zuordnung zum Curriculum	Studiengang "Bauingenieurwesen" Pflicht	
Lehrveranstaltungen	T2.1 Grundlagen T2.2 Projektorientierte Anwendungen	
Studienplansemester	1. Semester	
Angebotsturnus	jährlich	
Dauer des Moduls	1 Semester	
Kreditpunkte	5	
Veranstaltungsform	Seminaristischer Unterricht mit integrierten Übungen	
Arbeitsaufwand	60 h Präsenzzeit = 4 sws * 15 h/sws	
	90 h Eigenstudium	
	150 h Gesamtaufwand = 5 Kreditpunkte x 30	h/KP
Modulverantwortlicher	Prof. DiplIng. Sabine Kraus	
Dozent	Prof. DiplIng. Sabine Kraus	
Sprache	Deutsch	
Voraussetzungen nach		
Prüfungsordnung		
Empfohlene Voraussetzungen		
Studien-/ Prüfungsleistungen/ Prüfungsformen	Schriftliche Prüfung, praktische Prüfung	

Modulziele / Fachwissen: Die Studierenden geben die digitalen Methoden und Werkzeuge zur Angestrebte Planung und Ausführung im Bauwesen und deren Anwendungsbereiche zutreffend Lernergebnisse wieder. Fertigkeiten: Sie wählen die für die jeweilige Aufgabenstellung geeigneten Methoden bzw. Werkzeuge zutreffend aus und sind in der Lage, diese korrekt anzuwenden. Fähigkeiten/Kompetenzen: Die Studierenden sind in der Lage, moderne luK-Technologien, Datenstandards und Datenschnittstellen für kollaborative Szenarien im Bauwesen zu adaptieren und auf neue, unbekannte Problemstellungen praktisch anzuwenden. Modulinhalte • Übersicht über die IuK-Technologien im Bauwesen (beispielsweise Building Information Modeling, Cloude Computing, internetbasierte Projekträume) • Modellbildung, insbesondere Datenmodellierung mit Datenbankmodellierung • Prozess- und Produktmodelle • Datenstandards und Datenschnittstellen • Möglichkeiten und Grenzen bei der berufsbezogenen Anwendung von Standardsoftware • Mobile Anwendungen für die Baustelle • Bspw. PHP, SQL, HTML 5 Einüben ingenieurwissenschaftlichen Arbeitens durch Modellierung und programmtechnischer Umsetzung exemplarischer Aufgaben, beispielsweise: Aufbau einer WAMP-Umgebung an Hand von ingenieurpraktischen Beispielen wie Digitale Bauwerks-Dokumentation, • 5-D-Modellierung und –Simulierung, Netzorientierte Kommunikationslösungen für Ingenieuraufgaben, z.B. virtuelle Projekträume, heterogene Umgebungen, Multiusersysteme. Medienformen Tafelanschrieb, Beamerprojektion, interaktives Arbeiten mit dem Rechner Literatur Unterlagen der Dozierenden (Aktuelle Literaturhinweise befinden sich im Skript), Internetrecherche Fachliteratur zur Datenmodellierung, Datenbanksystemen, Datenbanksprachen, Skriptsprachen, Auszeichnungssprachen DIN-, ISO-, Industriestandards zu Datenmodellen Dokumentationen zu den verwendeten EDV-Programmen Beispielsweise: • Elmasri; Shamkant: Grundlagen von Datenbanksystemen Kofler: MySQL – Einführung, Programmierung, Referenz PHP5 aus der RRZN-Reihe

Modulbezeichnung	Bauwerke der Infrastruktur I	Kennziffer T3
Zuordnung zum Curriculum	Masterstudiengang "Bauingenieurwesen" Pflicht	
Lehrveranstaltungen	T3.1 Tragwerke- Brückenbau	
	T3.2 Besondere Tragwerke	
Studienplansemester	1. Semester	
Angebotsturnus	jährlich	
Dauer des Moduls	1 Semester	
Kreditpunkte	5	
Veranstaltungsform	Seminaristischer Unterricht mit integrierten Übungen	
Arbeitsaufwand	60 h Präsenzzeit = (2 SWS SU + 2 SWS S) * 15 h/SWS	
	90 h Eigenstudium	
	150 h Gesamtaufwand = 5 Kreditpunkte x 30	h/KP
Modulverantwortlicher	Prof. DrIng. Sergej Rempel	
Dozenten	Prof. DrIng. Sergej Rempel; Prof. DrIng. Je	ns Gattermann
Sprache	Deutsch	
Voraussetzungen nach		
Prüfungsordnung		
Empfohlene Voraussetzungen		
Studien-/ Prüfungsleistungen/	Schriftliche Prüfung	
Prüfungsformen		

Modulziele /	Die Studierenden können das Vorgetragene auf andere Problemstellungen	
Angestrebte	übertragen. Die Studierenden sind befähigt, Bauwerke zu entwerfen, das geeignete	
Lernergebnisse	Berechnungsmodell zu finden und die Einzelnachweise durchzuführen.	
	Sie sind in der Lage, unter Wirtschaftlichkeits- und Gestaltungsgesichtspunkten eine	
	Lösung zu entwickeln vom Entwurf über Vordimensionierung, Detailausbildung,	
	Berechnung, die Umsetzung in Konstruktionszeichnungen und die geeigneten	
	Bauverfahren auszuwählen. Die Studierenden können Regelwerke wissenschaftlich	
	interpretieren und diese auf neue und unbekannte Fragestellungen anwenden.	
Modulinhalte	T3.1: Tragwerke- Brückenbau	
	Neben den übergeordneten Grundsätzen des Brückenbaus wie Entwurfsgrundsätze,	
	Lastannahmen, gestalterische Gesichtspunkte werden die den Fachdisziplinen	
	Massivbau, Stahlbau, Holzbau zugeordneten Themen wie Brückensysteme,	
	Bauverfahren, gestalterische Besonderheiten, Brückenlager, Fahrbahnübergänge,	
	statische Nachweisformen, Nachweise der Gebrauchstauglichkeit und	
	Betriebsfestigkeit, Stabilitätsnachweise erörtert.	
	T3.2: Besondere Tragwerke	
	Es werden in der Praxis ausgeführte Projekte aus dem Bereich Infrastruktur	
	vorgestellt. Die Studierenden üben die Anwendung ingenieurwissenschaftliche	
	Methoden ein.	
Medienformen	Tafelanschrieb, Beamerprojektion	
Literatur	Skripten der Dozierenden	
	Holst: Brücken aus Stahlbeton- und Spannbeton	
	Menn: Stahlbetonbrücken	

Modulbezeichnung	Bauwerke der Infrastruktur II	Kennziffer T4
Zuordnung zum Curriculum	Masterstudiengang "Bauingenieurwesen" Pflicht	
Lehrveranstaltungen	T4.1 Verkehrsbauwerke T4.2 Interaktion Bauwerke und Baugrund	
Studienplansemester	2. Semester	
Angebotsturnus	jährlich	
Dauer des Moduls	1 Semester	
Kreditpunkte	5	
Veranstaltungsform	Seminaristischer Unterricht mit integrierten Übungen	
Arbeitsaufwand	60 h Präsenzzeit = (2 SWS SU + 2 SWS S) * 15 h/SWS 90 h Eigenstudium 150 h Gesamtaufwand = 5 Kreditpunkte x 30 h/KP	
Modulverantwortlicher	Prof. DrIng. Jens Gattermann	
Dozenten	Prof. DrIng. Jens Gattermann; Prof. DrIng.	Stefan Rohr
Sprache	Deutsch	
Voraussetzungen nach Prüfungsordnung		
Empfohlene Voraussetzungen	Kenntnisse im Spannbeton	
Studien-/ Prüfungsleistungen/ Prüfungsformen	Schriftliche Prüfung	

	1 .
Modulziele /	Fachwissen:
Angestrebte	Die Studierenden kennen die wichtigsten Entwurfsregeln und Bemessungsgrundsätze
Lernergebnisse	von Bauwerken des Tiefbaus und der Infrastruktur. Sie können die notwendigen
	Nachweise benennen und beschreiben.
	Fertigkeiten:
	Die Studierenden sind in der Lage, die Ihre Kenntnisse auf vergleichbare bzw. andere
	Fälle zu übertragen und an praktischen Beispielen anzuwenden. Ferner können
	bestehende Entwürfe an Hand vorgegebener Kriterien beurteilt werden. Einzelnen
	Bauelemente eines Entwurfs können dimensioniert werden.
	Fähigkeiten/Kompetenzen:
	Die Studierenden sind befähigt, Bauwerke zu entwerfen, das geeignete
	Berechnungsmodell zu finden und die Einzelnachweise zu führen.
	Sie sind in der Lage, unter Wirtschaftlichkeits- und Gestaltungsgesichtspunkten eine
	Lösung zu entwickeln vom Entwurf bis zur Ausführungsreife (u.a. Auswahl geeigneter
	Bauverfahren, Vordimensionierung, Detailausbildung, Berechnung, Umsetzung in
	Konstruktionszeichnungen). Die Studierenden können Regelwerke wissenschaftlich
	interpretieren und diese auf neue und unbekannte Fragestellungen anwenden.
	Die Studierenden können ihre erworbenen Fähigkeiten und Kenntnisse auf die
	Problematik ausgewählter Ausführungsbeispiele anwenden.
Modulinhalte	T4.1 Verkehrsbauwerke
	Neben den übergeordneten Grundsätzen des Tief- und Tunnelbaus wie
	Entwurfsgrundsätze, Lastannahmen, gestalterische Gesichtspunkte werden die den
	Fachdisziplinen Massivbau und Geotechnik zugeordneten Themen wie Tragsysteme,
	Bauverfahren, gestalterische Besonderheiten, statische und geotechnische
	Standsicherheitsnachweise sowie Nachweise der Gebrauchstauglichkeit erörtert.
	T4.2 Interaktion Bauwerke und Baugrund
	Es werden in der Praxis ausgeführte Projekte aus dem Bereich Infrastruktur
	vorgestellt. Die Studierenden üben die Anwendung ingenieurwissenschaftliche
	Methoden ein. Hierbei werden die vorgestellten Entwürfe bewertet und analysiert. Es
	werden alternative Lösungen erarbeitet.
Medienformen	Tafelanschrieb, Beamerprojektion
Literatur	Skripten der Dozierenden
Literatui	Baugrundtaschenbuch
	Daugi unutaschembuch

Modulbezeichnung	Spezialtiefbau und Tunnelbau	Kennziffer T5
Zuordnung zum Curriculum	Masterstudiengang "Bauingenieurwesen"	
	Pflicht	
Lehrveranstaltungen	T5.1 Spezialtiefbau	
	T5.2 Tunnelbau	
Studienplansemester	1. Semester	
Angebotsturnus	jährlich	
Dauer des Moduls	1 Semester	
Kreditpunkte	5	
Veranstaltungsform	Seminaristischer Unterricht mit integrierten Übungen	
Arbeitsaufwand	60 h Präsenzzeit = (2 SWS SU + 2 SWS S) * 15 h/SWS	
	90 h Eigenstudium	
	150 h Gesamtaufwand = 5 Kreditpunkte x 30	h/KP
Modulverantwortlicher	Prof. DrIng. Jens Gattermann	
Dozent	Prof. DrIng. Jens Gattermann	
Sprache	Deutsch	
Voraussetzungen nach		
Prüfungsordnung		
Empfohlene Voraussetzungen		
Studien-/ Prüfungsleistungen/	Schriftliche Prüfung	
Prüfungsformen		

Modulziele / Fachwissen: Die Studierenden haben ihre im Bachelorstudiengang erworbenen Fachkenntnisse vertieft und Angestrebte erweitert. Sie verstehen die bodenmechanischen und felsmechanischen Berechnungsmodelle Lernergebnisse und deren Grenzen. Die Studierenden verfügen über umfangreiche Kenntnisse der Bauverfahren im Grundbau, Spezialtiefbau und Tunnelbau. Sie kennen die wichtigsten Entwurfsregeln und Bemessungsgrundsätze von Bauwerken des Tief- und Tunnelbaus. Fertigkeiten: Die Studierenden sind in der Lage, die Ihre Kenntnisse auf vergleichbare bzw. andere Fälle zu übertragen und an praktischen Beispielen anzuwenden. Die Ermittlung und Bewertung der Baugrundeigenschaften sowie der zugehörigen Modellbildung ist ihnen möglich. Sie können auf Grundlage bekannter Projekte Bauwerke entwerfen. Ferner können bestehende Entwürfe an Hand vorgegebener Kriterien beurteilt werden. Einzelne Bauelemente eines Entwurfs können dimensioniert werden. Fähigkeiten/Kompetenzen: Durch die Verknüpfung der vorgenannten Ziele sind sie in der Lage auf ingenieurwissenschaftlicher Basis eigene Problemlösungen, auch interdisziplinär, zu entwickeln. Die Absolventen sind in die Lage, die Aufgaben der Geotechnik und des Tunnelbaus in der Planung, Beratung und Bauüberwachung nach dem Stand der Technik und dem Stand der angewandten Wissenschaft einsetzen. Die Studierenden sind befähigt, Bauwerke zu entwerfen, das geeignete Berechnungsmodell zu finden und die Einzelnachweise zu führen. Die Studierenden können Regelwerke wissenschaftlich interpretieren und diese auf neue und unbekannte Fragestellungen anwenden. Modulinhalte T5.1 Spezialtiefbau: ingenieurwissenschaftliche Grundlagen geotechnischer Bemessungen / Berechnungsmodelle Turm- und Pfeilergründungen Schwimm- und Senkkästen (Caissons) Bodenstabilisierung Iniektionen Hangsicherungen T5.2 Tunnelbau: ingenieurwissenschaftliche Grundlagen geotechnischer Bemessungen / Berechnungsmodelle Spritzbetonbauweise Sprengvortrieb Schildvortrieb Rohrvortrieb Medienformen Tafelanschrieb, Beamerprojektion, Übungen, Overheadfolien Skript des Dozierenden Literatur Grundbautaschenbuch, Teil 1-3 Betonkonstruktionen im Tiefbau Kutzner: Injektionen im Baugrund Maidl: Handbuch für Spritzbeton Maidl: Tunnelbau im Sprengvortrieb Maidl, Herrenknecht, Anheuser: Maschineller Tunnelbau Wittke et.al: Statik und Konstruktion maschineller Tunnelvortriebe Buja: Handbuch des Spezialtiefbaus

Modulbezeichnung	Verkehrswegebau und Erhaltungsmanagement	Kennziffer T6
Zuordnung zum Curriculum	Masterstudiengang "Bauingenieurwesen" Pflicht	
Lehrveranstaltungen	T6.1 Verkehrswegebau T6.2 Erhaltungsmanagement	
Studienplansemester	1. Semester	
Angebotsturnus	jährlich	
Dauer des Moduls	1 Semester	
Kreditpunkte	5	
Veranstaltungsform	Seminaristischer Unterricht mit integrierten Übungen	
Arbeitsaufwand	60 h Präsenzzeit = (2 SWS SU + 1 SWS Pra + 1 SWS S) * 15 h/SWS 90 h Eigenstudium 150 h Gesamtaufwand = 5 Kreditpunkte x 30 h/KP	
Modulverantwortliche	Prof. DiplIng. Bracher	
Dozenten	Prof. DiplIng. Bracher, Lehrbeauftragte	
Sprache	Deutsch	
Voraussetzungen nach Prüfungsordnung		
Empfohlene Voraussetzungen		
Studien-/ Prüfungsleistungen/ Prüfungsformen	Schriftliche Prüfung Zulassungsvoraussetzung zur Prüfung: Leistungsnachweis	

Modulziele /	T6.1: Verkehrswegebau
Angestrebte Lernergebnisse	Fachwissen: Die Studierenden erklären die fahrdynamischen Gesetze, die Wechselwirkungen zwischen Rad und Schiene und die gesetzlichen Vorgaben (AEG, EBO) für den Bahnbetrieb und -bau. Fertigkeiten: Die Studierenden berechnen die geometrischen Parameter von Gleisbögen, insbesondere die Überhöhung und den Überhöhungsfehlbetrag, um die zulässige Geschwindigkeit festzulegen und Weichen zu entwerfen.
	Fähigkeiten/Kompetenzen: Die Studierenden beurteilen die Auswirkungen unterschiedlicher Trassierungsparameter auf die Sicherheit und den Verschleiß und wählen die geeigneten geometrischen Elemente unter Einhaltung der technischen Grenzwerte aus.
	T6.2: Erhaltungsmanagement Fachwissen: Die Lernenden können auf der Basis ihres Faktenwissens die Bedeutung des Erhaltungsmanagements von Verkehrswegen mit eigenen Worten erklären. Fertigkeiten: Sie können die komplexen Strukturen, zum Beispiel von Straßenerhaltungsplänen interpretieren und die inneren Strukturen aufdecken. Fähigkeiten/Kompetenzen: Mit ihren Kenntnissen können die Studierenden neue Erhaltungsstrategien aufbauen, Varianten hierfür ausarbeiten und optimierte Lösungen auswählen.
Modulinhalte	T6.1: Verkehrswegebau
	Überblick über die Ordnung des Eisenbahnwesens, AEG und EBO; Fahrdynamik: Sinuslauf des Radsatzes und die daraus resultierenden Anforderungen an die Gleisgeometrie, Rad-Schiene-Kontakt; Querschnitt und Raumvorgaben, Festlegung von Spurweite, Gleisabstand und Lichtraumprofil; Horizontaltrassierung: Elemente, Querbeschleunigung und Sicherheit, Rampen: Konstruktion der Überhöhungsrampen und Übergangsbögen; Vertikaltrassierung: Längsneigungen und Ausrundungen; Weichen: Grundlagen, Aufbau und geometrischer Entwurf von Weichen; Fahrweg: Funktion der Bauteile von Oberbau und Unterbau im Zusammenhang mit der Trassierungsstabilität
	T6.2: Erhaltungsmanagement Moderne Werkzeuge des Erhaltungsmanagements, Zustandserfassungen und - bewertungen (ZEB) der Fahrbahnen mit regelmäßigen Bauwerksprüfungen, Aufbau mittelfristiger Erhaltungsprogramme mittels PMS oder VEB, Aufstellung des mehrjährigen Koordinierten Erhaltungs- und Bauprogramms (KEB) etc.
Medienformen	Tafelanschrieb, Overhead, Beamerprojektion
Literatur	Skript des Dozierenden (Aktuelle Literaturhinweise befinden sich im Skript). Einschlägige Richtlinien für das Verkehrswesen, insbesondere die Veröffentlichungen des BMVI, der FGSV und der BAST. Straßenbau von A-Z. Weise, Durth et.al.: Straßenbau, Band 1 und 2 Eisenmann, Leykauf: Betonfahrbahnen Matthews: Vermessungskunde I und II

Modulbezeichnung	Wasserwirtschaft	Kennziffer T7
Zuordnung zum Curriculum	Studiengang "Bauingenieurwesen" Pflicht	
Lehrveranstaltungen	T7.1 Weitergehende Abwasserreinigung T7.2 Verfahrenstechnik und Kläranlagensimulation	
Studienplansemester	2. Semester	
Angebotsturnus	jährlich	
Dauer des Moduls	1 Semester	
Kreditpunkte	5	
Veranstaltungsform	Seminaristischer Unterricht mit integrierten Übungen	
Arbeitsaufwand	60 h Präsenzzeit = 4 SWS * 15 h/SWS	
	90 h Eigenstudium	
	150 h Gesamtaufwand = 5 Kreditpunkte x 30	h/KP
Modulverantwortliche	Prof. DrIng. Rita Hilliges	
Dozentin	Prof. DrIng. Rita Hilliges	
Sprache	Deutsch	
Voraussetzungen nach Prüfungsordnung		
Empfohlene Voraussetzungen		
Studien-/ Prüfungsleistungen/ Prüfungsformen	Schriftliche Prüfung	

Modulziele / Die Studierenden können in direkter Anwendung ingenieurspezifischer Methoden Angestrebte wissenschaftlich bearbeiten. Fachwissen K1/2: Lernergebnisse Studierenden kennen die naturwissenschaftlichen und mathematischen Grundlagen der Siedlungswasserwirtschaft und können diese beschreiben und darstellen wie z.B. verfahrenstechnische Fließschemata. Des Weiteren können Sie die Verfahrenstechnik erklären und die jeweiligen Vor- und Nachteile benennen. Fertigkeiten K3/K4: Sie besitzen die Fähigkeit, Systeme wasserwirtschaftliche Systems wie z.B. zur weitergehenden Abwasserreinigung ingenieurwissenschaftlich zu analysieren, planen und erweitern zu können. Hierbei können Sie auf Grundlage der erlernten technischen Regelwerke die erforderlichen Anlagenteile berechnen. Fähigkeiten/Kompetenzen K5/K6: Die Studierenden sind in der Lage, Schwachstellen eines Abwasserreinigungssystems zu identifizieren und können Maßnahmen zur Abhilfe auswählen, auswerten, beurteilen, Die Studierenden können wasserwirtschaftliche Systeme ingenieurwissenschaftlich zu analysieren und mit wissenschaftlichen Ansätzen modelltechnisch aufzubereiten. Sie sind in der Lage, das dynamische Betriebsverhalten z.B. einer Abwasserreinigungsanlage mit einem Simulationsmodell nachzubilden und Konzepte für Extrembelastungen und Störfälle zu entwickeln. Modulinhalte T7.1 Weitergehende Abwasserreinigung Wissenschaftliche Grundlagen der biochemischen und physikalischen Abwasserbehandlung. Statistische Methoden. Bemessung, Sanierung und Erweiterung von Kläranlagen für: Stickstoffelimination, Phosphatelimination, Schlammbehandlung und – entsorgung. Weitergehende Verfahren der Abwasserreinigung (z.B. SBR- und Membran-Belebungsverfahren, Zweistufige Belebungsanlagen) T7.2 Verfahrenstechnik und Simulation Grundlegende und aufbauende Kenntnisse zur Wasserwirtschaft sowie Grundlagen der Simulation inkl. Messtechnik, Steuerungs- und Regelungsstrategien. Einüben wissenschaftlichen Arbeitens durch Abbildung von wasserwirtschaftlichen Anlagen, des Betriebszustands und der Steuerungs- und Regelungsstrategien in einem Simulationsprogramm mit Kalibrierung. Simulation von Extremzuständen und Entwurf geeigneter Maßnahmen zur Einhaltung der Mindestanforderungen an den Betrieb. Medienformen Tafelanschrieb, Beamerprojektion, interaktive EDV-Übungen, Exkursionen Literatur Skript des Dozierenden DWA: Regelwerk und Handbücher Unterlagen Weiterbildendes Studium "Wasser, Boden, Umwelt" Bauhaus Universität Weimar Tchobanoglous, Schroeder: Water Quality Bever, Stein, Teichmann: Weitergehende Abwasserreinigung Kunst, Helmer, Knoop: Betriebsprobleme auf Kläranlagen durch Blähschlamm, Schwimmschlamm

Modulbezeichnung	Unterhalt, Betrieb und Rückbau	Kennziffer T8
Zuordnung zum Curriculum	Masterstudiengang "Bauingenieurwesen" Pflicht	
Lehrveranstaltungen	T8.1 Hochbau T8.2 Tiefbau	
Studienplansemester	3. Semester	
Angebotsturnus	jährlich	
Dauer des Moduls	1 Semester	
Kreditpunkte	5	
Veranstaltungsform	Seminaristischer Unterricht mit integrierten Übungen	
Arbeitsaufwand	60 h Präsenzzeit = 4 sws * 15 h/sws	
	90 h Eigenstudium	
	150 h Gesamtaufwand = 5 Kreditpunkte x 30	h/KP
Modulverantwortlicher	Prof. DrIng. Bracher	
Dozierende	Prof. DrIng. Bracher, Lehrbeauftragte	
Sprache	Deutsch	
Voraussetzungen nach Prüfungsordnung		
Empfohlene Voraussetzungen		
Studien-/ Prüfungsleistungen/ Prüfungsformen	Schriftliche Prüfung	

Modulziele / Fachwissen: Die Studierenden wissen die Betriebsphase eines Bauwerks in ihrer Angestrebte überragenden Bedeutung für die Gesamtkosten richtig einzuordnen. Sie begründen, Lernergebnisse weshalb deren Betrachtung bereits in der Konzeptionsphase unter ökologischen und ökonomischen Gesichtspunkten zusehends an Bedeutung gewinnt. Fertigkeiten: Die Studierenden sind in der Lage zu identifizieren, welche Prozesse während der Betriebsphase, bei möglichen Erneuerungen und der Verwertung ablaufen. Hierauf aufbauend werden die erforderlichen Leistungen beschrieben und bewertet. Fähigkeiten/Kompetenzen: Sie sind in der Lage, den Lebenszyklus eines Bauwerks als Ganzes zu beurteilen. In der Folge ist es den Studierenden möglich, Optimierungspotenziale in Bauwerkskonzeptionen zu identifizieren und diese zu optimieren. Modulinhalte • Lebenszyklusorientierung und Ganzheitlichkeit Nachhaltigkeit Facility Management Betrieb Dokumentation Informationsmanagement Energiemanagement Umbau Sanierung Verwertung rechtliche Grundlagen Medienformen Tafelanschrieb, Overhead, Beamerprojektion, Exkursionen Skripten der Dozierenden Literatur

Modulbezeichnung	Interdisziplinäres Projekt in Teamwork oder BIM-Projekt	Kennziffer T9
Zuordnung zum Curriculum	Masterstudiengang "Bauingenieurwesen" Pflicht	
Lehrveranstaltungen	T9 Interdisziplinäres Projekt in Teamwork oder BIM-Projekt	
Studienplansemester	3. Semester	
Angebotsturnus	jährlich; optional: halbjährlich	
Dauer des Moduls	1 Semester	
Kreditpunkte	7	
Veranstaltungsform	Projekt	
Arbeitsaufwand	60 h Präsenzzeit = 4 sws * 15 h/sws	
	150 h Eigenstudium	
	210 h Gesamtaufwand = 7 Kreditpunkte x 30 h	/KP
Modulverantwortliche	Prof. DiplIng. Sabine Kraus	
Dozierende	Betreuende Professorin oder betreuender Pro	ofessor
Sprache	Deutsch	
Voraussetzungen nach Prüfungsordnung		
Empfohlene Voraussetzungen	Module des 1. und 2. Semesters	
Studien-/ Prüfungsleistungen/ Prüfungsformen	Modularbeit und praktische Prüfung Zulassungsvoraussetzung: Teilnahme (Anwese	enheit bei allen
	Präsenzterminen - Projektseminare)	

Modulziele / Fachwissen: Die Studierenden wissen die Mechanismen der Gruppenarbeit einordnen Angestrebte und die Phasen der Teamentwicklung deuten zu können. Übertragene Aufgabenstellungen können sie beschreiben und wiedergeben. Lernergebnisse Fertigkeiten: Die Studierenden haben die Fähigkeit, im Team zu arbeiten und Aufgabenstellungen unter Berücksichtigung aller Randbedingungen - auch bei unvorhersehbaren Arbeits- oder Lernkontexten - auf ingenieurwissenschaftlicher Basis ganzheitlich zu bewältigen. Sie sind in der Lage, ein größeres interdisziplinäres Projekt vollständig zu planen, vorzubereiten und durchzuführen. Fähigkeiten/Kompetenzen: Sie sind in der Lage, aus einer komplexen Problemstellung heraus Teilaufgaben zu identifizieren und haben gelernt, im Selbstorganisationsprozess ein Team zu bilden, wobei sie die Teilaufgaben an einzelne Teammitglieder zur Bearbeitung übertragen. Sie können den Lösungsablauf planen, die Einhaltung von vereinbarten Teilzielen kontrollieren, Konflikte bei Störungen beseitigen, Teillösungen zusammenführen und die Projektlösung präsentieren. Sie haben Problemlösungsfertigkeiten, um neue Kenntnisse zu gewinnen und/oder neue Verfahren zu entwickeln und/oder Wissen aus verschiedenen Fächern zu integrieren. Modulinhalte Einüben wissenschaftlichen Arbeitens bei der Anwendung ingenieurspezifischer Methoden, Planung, Vorbereitung und Durchführung eines vorgegebenen Projekts in einem interdisziplinären Team evtl. mit Studierenden anderer bauorientierter Studienfächer, Labor- oder Versuchsarbeit. Projekt in Kooperation mit externen Institutionen Projektorganisatorisch erfolgt eine Begleitung im Rahmen von regelmäßigen Projektstatussitzungen. Dabei werden situativ folgende Werkzeuge des Projektmanagements eingesetzt und vertieft: • Kalkulation; Projekthandbuch; Vertragsanalyse; Risikoanalyse • Projektziele; Projektstart Projektstrukturplan • Abwicklungsstrategie; Terminplanung; Kapazitätsplanung; Controlling • Projektsteuerungsteam Projektabschlussbericht Kundenpflege Troubleshooting • Kontinuierlicher Verbesserungsprozess Schlüsselsysteme • Konfigurationsmanagement; Claimmanagement; Änderungsmanagement • Expediting; Fortschrittskontrolle; Projektstatusbericht Medienformen Tafelanschrieb, Beamerprojektion, Flipcharts, Pinnwände Literatur Projektunterlagen der Dozierenden Individuelle, projektbezogene Literaturhinweise der betreuenden Professoren bzw. Professorinnen

Modulbezeichnung	Wahlpflichtmodule	Kennziffer TWx
Zuordnung zum Curriculum	Masterstudiengang "Bauingenieurwesen"	
	Wahlpflicht	
	Altaunativ kännan avala Angalaata ava dana Cum	ialaa alaa 11a alaa alala
	Alternativ können auch Angebote aus dem Curriculum der Hochschule München Master Bauingenieurwesen gewählt werden.	
Lehrveranstaltungen	Wahlpflichtmodule	
Lem veranstattangen	Bezeichnungen der Lehrveranstaltungen gemäß aktuellem Studienplan	
Studienplansemester	2. Semester	
Angebotsturnus	jährlich	
Dauer des Moduls	1 Semester	
Kreditpunkte (KP)	25KP insgesamt	
Veranstaltungsform	Seminar	
Arbeitsaufwand	120 h Präsenzzeit = 20 SWS * 15 h/SWS	
	450 h Eigenstudium	
	750 h Gesamtaufwand = 25 Kreditpunkte x 30) h/KP
Modulverantwortliche	Betreuende Professorin oder betreuender Profe	essor
Dozenten	Betreuende Professorin oder betreuender Profe	essor
Sprache	Deutsch, ggf. Englisch	
Voraussetzungen nach		
Prüfungsordnung		
Empfohlene Voraussetzungen		
Studien-/ Prüfungsleistungen/	Schriftliche Prüfung	
Prüfungsformen		

Modulziele /	Kenntnisse, Lernergebnisse und Qualifikationsziele:
Angestrebte	Die Studierenden wählen mehrere Wahlpflichtmodule aus einem semesteraktuellen
Lernergebnisse	Angebot (nach Festlegung des jeweiligen Studienplans). Hierbei ist die Anzahl dieser
Modulinhalte	Module so zu bestimmen, dass in Summe mindestens die erforderliche
	Kreditpunktzahl erreicht wird. Die wechselnden Angebote befassen sich mit einer
	Auswahl an Spezialthemen, Forschungsthemen und aktuellen Themen aus vielen
	Bereichen des Bauingenieurwesens.
	Werden in mehr als den notwendigen Modulen Prüfungen erfolgreich bestanden,
	werden auf Wunsch die Ergebnisse dieser Zusatzmodule auf dem Zeugnis mit
	aufgeführt.
	Die Studierenden verfügen über vertiefte Kenntnisse im Rahmen des individuellen
	Fachangebots. Die Modulinhalte, Lernergebnisse und Qualifikationsziele sind konkret
	von den Inhalten der ausgewählten Module abhängig und sind daher bewusst
	vielfältig ausgeprägt. Die Wahl der Wahlpflichtmodule erlaubt den Studierenden eine
	Schwerpunktbildung gemäß ihren eigenen Interessen.
Verwendbarkeit	
des Moduls	
Medienformen	Tafelanschrieb, Beamerprojektion, interaktives Arbeiten mit dem Rechner etc.
Literatur	Unterlagen der Dozierenden und individuelle, fachbezogene Literatur

Modulbezeichnung	Masterarbeit mit Masterseminar	Kennziffer TM1
Zuordnung zum Curriculum	Masterstudiengang "Bauingenieurwesen" Pflicht	
Lehrveranstaltungen	TM1.1 Masterarbeit	
Studienplansemester	3. Semester	
Angebotsturnus	halbjährlich	
Dauer des Moduls	1 Semester	
Kreditpunkte	18	
Veranstaltungsform	Masterarbeit	
Arbeitsaufwand	60 h Präsenzzeit = 4 SWS S * 15 h/SWS	
	480 h Eigenstudium	
	540 h Gesamtaufwand = 18 Kreditpunkte x 3	0 h/KP
Modulverantwortliche	Betreuende Professorin oder betreuender Professor	
Dozierende	Betreuende Professorin oder betreuender Professor	
Sprache	Deutsch	
Voraussetzungen nach Prüfungsordnung	Zur Themenausgabe siehe §6 (1) der Studien- und Prüfungsordnung für den Masterstudiengang Bauingenieurwesen: Bei Vollzeitstudium frühestens im zweiten Semester Bei Teilzeitstudium frühestens im vierten Semester	
Empfohlene Voraussetzungen	Module des 1. und 2. Semesters	
Studien-/ Prüfungsleistungen/ Prüfungsformen	Voraussetzung zur Bewertung der Masterarbeit: Teilnahme am Masterseminar (siehe hierzu Teilmodul TM1.2) inkl. Verteidigung d Masterarbeit	
	Voraussetzung zur Bewertung der Masterark Teilnahme am Masterseminar (Laufzettel) in Masterarbeit	-

Modulziele / Angestrebte Lernergebnisse	Die Studierenden sind befähigt, selbstständig und methodisch richtig eine ingenieurwissenschaftliche Problemstellung zu bearbeiten. Die Masterarbeit zeigt, dass die Studierenden in der Lage sind, eine komplexe Aufgabenstellung selbstständig auf wissenschaftlicher Grundlage bei der Anwendung ingenieurspezifischer Methoden zu bearbeiten, schriftlich niederzulegen und vor einem Fachpublikum verbal zu verteidigen.
Modulinhalte	Masterarbeit: schriftliche Ausarbeitung. Masterseminar: Verteidigung der Masterarbeit, Besuch von Verteidigungen anderer Studierender (Laufzettel)
Medienformen	Interaktives Arbeiten mit dem Rechner, Beamerprojektion, Tafelanschrieb, Flipcharts, Pinnwand
Literatur	Unterlagen der Dozierenden Richtlinien und Hinweise für die Ausarbeitung und Präsentation wissenschaftlicher Arbeitsergebnisse Rossig, Prätsch: Wissenschaftliches Arbeiten Scheld: Anleitung zur Anfertigung von Praktikums-, Seminar- und Diplomarbeiten sowie Bachelor- und Masterarbeiten Standop, Mayer: Die Form der wissenschaftlichen Arbeit