

Modulhandbuch

Masterstudiengang

Produktion

Production Engineering

istockphoto.com

Studienziel gemäß §2 der Studien- und Prüfungsordnung:

Das konsekutive Masterstudium hat das Ziel, Absolventinnen und Absolventen von ingenieurtechnischen Bachelor-Studiengängen für eine herausgehobene Tätigkeit in Entwicklung und Projektierung von Produktionssystemen sowie den Fabrikbetrieb zu qualifizieren. Es leistet einen Beitrag zum lebenslangen Lernen, unterstützt Unternehmen und Mitarbeiter gleichermaßen, wettbewerbsfähig, innovativ und damit am Markt, aber auch in der Gesellschaft gefragt zu sein. Basis dieses konsekutiven Studiengangs sind ein enger Bezug zu Wissenschaft und betrieblicher Praxis unter Einbeziehung moderner Lehr- und Lernformen. Technische Lösungen sollen möglichst allen Menschen weltweit ein gerechtes, gutes und gesundes Leben ermöglichen können. Der Schwerpunkt der Studieninhalte zielt auf die gründliche Vertiefung der methodischen Fähigkeiten und Fertigkeiten sowie auf den Erwerb von praxisorientiertem Spezialwissen unter besonderer Berücksichtigung der Digitalisierung im Maschinenbau sowie der drei Bereiche Fertigungsebene, Fertigungsleitebene und Unternehmensleitebene. Darüber hinaus sollen selbständiges Arbeiten und fachübergreifendes Denken besonders gefördert werden. Neben der technischen und wissenschaftlichen Weiterqualifikation soll auch der zunehmenden Bedeutung betriebswirtschaftlicher und organisatorischer Fachkenntnisse, der Teamarbeit und der Mitarbeiterführung Rechnung getragen werden

Inhaltsverzeichnis

A: Unternehmensleitebene: Grundlagen	4
B: Fertigungsleitebene: Grundlagen	7
C: Fertigungsebene: Grundlagen	11
D: Simulationsstudien	15
E: Höhere Mathematik	21
F: Höhere Mechanik	23
G: Unternehmensleitebene: Vertiefung	25
H: Fertigungsleitebene: Vertiefung	28
I: Fertigungsebene: Vertiefung	31
K: Masterarbeit	34

Curriculum / Regelstudienzeit (vgl. § 4 Abs. 2 der Studien- und Prüfungsordnung)

Vollzeit-Studium: 3 Semester

Teilzeit-Studium: max. 6 Semester; individueller Studienverlauf (Zuordnung Modul / Semester) gemäß Abstimmung mit Studiengangsleiter

Modul	A: Unternehmensleitebene: Grundlagen		
Modulbezeichnung engl.	Company Management: Basics		
Lehrveranstaltungen	Produktionsmanagement (A1) Produktionsplanung und -steuerung (A2)		
Veranstaltungsturnus	Virtuelle synchrone Anteile: Sommersemester Virtuelle asynchrone Anteile: Sommer- und Wintersemester		
Modulverantwortlich	Prof. DrIng. Stefan Braunreuther		
Sprache	Deutsch		
Zuordnung zum Curriculum	Masterstudiengang "Produktion", 1. Semester im Vollzeit-Studium; Teilzeit-Studium siehe S. 3		
Verwendbarkeit des Moduls	Das Modul ist ein Pflichtmodul und zentraler Bestandteil des Studiengangs.		
Arbeitsaufwand	A1: 90 h A2: 90 h		
	Gesamtaufwand: 180 h		
Credit Points (CP)	6		
Voraussetzungen nach Prüfungsordnung	Keine		
Empfohlene Voraussetzungen	Keine		
Angestrebte Lernergebnisse	 Nachdem Studierende das Modul besucht haben, sind sie in der Lage, Kenntnisse: ein Unternehmen auf eine längere Sichtweise auszurichten. die verschiedenen Interessensgruppen zu kennen und diese zu adressieren. ein Produktionsunternehmen auf hoher und mittlerer Leitungsebene auszusteuern. Fertigkeiten: Entwicklung und Anwendung von Methoden für Strategien und deren Umsetzung durchzuführen. Ergebnisse, samt den typischen Werkzeugen und Notationen, zu interpretieren und darzustellen. 		

Studien- und Siehe Studien- und Prüfungsordnung sowie jeweils aktuelle Fassung des Prüfungsleistungen Studienplans; die Benotung erfolgt gemäß § 20 der Allgemeinen Prüfungsordnung (APO) der THA in der jeweils gültigen Fassung.

Produktions-Portfolio-Erstellungen durchzuführen.

Strategieprozesse auszuüben und Beschlussvorlagen zu erarbeiten.

eine Fabrik-Ausrichtung auf ein Produktionsprogramm vorzunehmen.

Kompetenzen:

eine Fabrik auszusteuern.

Lehrveranstaltung	A1: Produktionsmanagement		
Zuordnung zum Modul	A		
Dozent(in)	Prof. DrIng. Stefan Braunreuther		
Lehr- und Lernform/ Semesterwochenstunden	Virtuelle Asynchrone Lehre (VAL), Virtuelle Lehrveranstaltung (VLV): 2 SWS Übung (Ü): 1 SWS		
Arbeitsaufwand	VAL, VLV: 30 h Ü: 15 h Eigenstudium: 45 h		
	Gesamtaufwand: 90 h		
Inhalt	 Strategisches Produktionsmanagement Unternehmensgestaltung Organisationsgestaltung Geschäftsmodelle mit Planspiel Rechnungswesen Fabrikplanung Netzwerk- und Standortplanung Struktur- und Layout-Planung Unternehmensführung Führung Kompensation Arbeitsrecht 		
Literatur	Wiendahl, HP.: Betriebsorganisation für Ingenieure.		

Lehrveranstaltung	A2: Produktionsplanung und -steuerung		
Zuordnung zum Modul	A		
Dozent(in)	Prof. DrIng. Stefan Braunreuther		
Lehr- und Lernform/ Semesterwochenstunden	Virtuelle Asynchrone Lehre (VAL), Virtuelle Lehrveranstaltung (VLV): 2 SWS Übung (Ü): 1 SWS		
Arbeitsaufwand	VAL, VLV: 30 h Ü: 15 h Eigenstudium: 45 h		
	Gesamtaufwand: 90 h		
Inhalt	 Taktisches Produktionsmanagement o Produktionsplanung o Modellierung Operatives Produktionsmanagement o Produktionssteuerung o Produktions-IT o Ansätze der Selbststeuerung o Planspiel Auftragsfreigabeverfahren 		
Literatur	Wiendahl, HP.: Betriebsorganisation für Ingenieure.		

Modul	B: Fertigungsleitebene: Grundlagen		
Modulbezeichnung engl.	Production Management: Basics		
Lehrveranstaltungen	Robotik (B1) Montage- und Greiftechnik (B2)		
Veranstaltungsturnus	Virtuelle synchrone Anteile: Sommersemester Virtuelle asynchrone Anteile: Sommer- und Wintersemester		
Modulverantwortlich	Prof. DrIng. Jürgen Lenz		
Sprache	Deutsch		
Zuordnung zum Curriculum	Masterstudiengang "Produktion", 1. Semester im Vollzeit-Studium; Teilzeit-Studium siehe S. 3		
Verwendbarkeit des Moduls	Das Modul ist ein Pflichtmodul und zentraler Bestandteil des Studiengangs.		
Arbeitsaufwand	B1: 90 h B2: 90 h		
	Gesamtaufwand: 180 h		

Credit Points (CP) 6

Voraussetzungen nach Keine Prüfungsordnung

Empfohlene Voraussetzungen Höhere Mathematik, Technische Mechanik 2 (Kinetik und Kinematik)

Angestrebte Lernergebnisse

Nachdem Studierende das Modul besucht haben, sind sie in der Lage,

Kenntnisse:

- die Grundtypen industrieller Robotersysteme zu kennen.
- Wirkprinzipe, Ausprägungsformen und Eigenschaften von Greifsystemen zu benennen.
- die Normen und Standards für die industrielle Robotik zu kennen.

Fertigkeiten:

- die Kinematik von Industrierobotern systematisch auf Basis der Denavit-Hartenberg Konvention herzuleiten.
- Eigenschaften und Anforderungen an industrielle Greifsysteme zu definieren.
- Methoden zur Gefahren- und Risikoanalyse auf industrielle Roboterzellen anzuwenden.

Kompetenzen:

- dynamische Eigenschaften und Modelle von Manipulatoren herzuleiten und grundlegende Regelungskonzepte darauf auszulegen.
- Greifsysteme für einen vorgegebenen Anwendungsfall auszuwählen und auszulegen.
- Normen und Standards zur Auslegung von Roboteranwendungen anzuwenden und die funktionale Sicherheit von Anwendungen zu bewerten.

Studien- und Siehe Studien- und Prüfungsordnung sowie jeweils aktuelle Fassung des **Prüfungsleistungen** Studienplans; die Benotung erfolgt gemäß § 20 der Allgemeinen Prüfungsordnung (APO) der THA in der jeweils gültigen Fassung.

Lehrveranstaltung	B1: Robotik		
Zuordnung zum Modul	В		
Dozent(in)	Prof. Dr. Florian Kerber		
Lehr- und Lernform/ Semesterwochenstunden	Virtuelle Asynchrone Lehre (VAL), Virtuelle Lehrveranstaltung (VLV): 2 SWS Übung (Ü): 1 SWS		
Arbeitsaufwand	VAL, VLV: 30 h Ü: 15 h Eigenstudium: 45 h		
	Gesamtaufwand: 90 h		
Inhalt	 Grundaufbau industrieller Roboter und unterschiedliche Kinematiken Einführung in die Robotertechnik, Koordinatensysteme, Koordinatentransformationen, Position und Orientierung kinematische und dynamische Modellierung von Robotern Regelungskonzepte für Industrieroboter Sicherheitseinrichtungen im Roboterumfeld Normen und Standards für die industrielle Robotik Mensch-Roboter-Kooperation 		
Literatur	 Spong, M. W.; Hutchinson, S.; Vidyasagar, M.: Robotic Modeling and Control. Wiley. Siciliano, B.; Katib, O.: Springer Handbook of Robotics. Springer. van der Schaft, A.: L2-gain and passivity. Springer. 		

Lehrveranstaltung	B2: Montage- und Greiftechnik		
Zuordnung zum Modul	В		
Dozent(in)	Prof. DrIng. Jürgen Lenz		
Lehr- und Lernform/ Semesterwochenstunden	Virtuelle Asynchrone Lehre (VAL), Virtuelle Lehrveranstaltung (VLV): 2 SWS Übung (Ü): 1 SWS		
Arbeitsaufwand	VAL, VLV: 30 h Ü: 15 h Eigenstudium: 45 h		
	Gesamtaufwand: 90 h		
Inhalt	 Grundlagen und Komponenten der Greif- und Vakuumsaugtechnik Auswahl und Auslegung von Greifkomponenten Manuelle, hybride und automatisierte Montagesysteme Planung von Montagesystemen Assistenzsysteme in der Montagetechnik 		
Literatur	 Hesse, S.: Greiftechnik. Hanser. Lotter, B.; Wiendahl, HP.: Montage in der industriellen Produktion. Springer. 		

C: Fertigungsebene: Grundlagen

Modulbezeichnung engl.	Manufacturing: Basics
Lehrveranstaltungen	Werkstofftechnik für Produktionsingenieure (C1) Seminar Werkstofftechnik für Produktionsingenieure (C2)
Veranstaltungsturnus	Virtuelle synchrone Anteile: Sommersemester Virtuelle asynchrone Anteile: Sommer- und Wintersemester
Modulverantwortlich	Prof. Dr. mont. Helmut Wieser
Sprache	Deutsch
Zuordnung zum Curriculum	Masterstudiengang "Produktion", 1. Semester im Vollzeit-Studium; Teilzeit-Studium siehe S. 3
Verwendbarkeit des Moduls	Das Modul ist ein Pflichtmodul und zentraler Bestandteil des Studiengangs.
Arbeitsaufwand	C1: 90 h C2: 90 h
	Gesamtaufwand: 180 h
Credit Points (CP)	6
Voraussetzungen nach Prüfungsordnung	Keine
Empfohlene Voraussetzungen	Keine
Angestrehte I ernergehnisse	Nachdem Studierende das Modul besucht haben, sind sie in der

Angestrebte Lernergebnisse Nachdem Studierende das Modul besucht haben, sind sie in der Lage,

Kenntnisse:

- Grundlagen zum Aufbau, Struktur und spezifischen Eigenschaften von Metallen und Kunststoffen zu kennen.
- Einteilung und Besonderheiten der am häufigsten verarbeiteten Werkstoffgruppen (Thermoplaste, Duroplaste, Stähle, Aluminiumlegierungen, sonstige Metalle, Verbundwerkstoffe) wiedergeben zu können.
- den Einfluss der wichtigsten Fertigungsverfahren auf den Zustand und die Eigenschaften von Werkstoffen zu kennen.
- das Verhalten von Werkstoffen bei der Verarbeitung einschätzen zu können.
- die wichtigsten Verschleißmechanismen an Fertigungsmitteln zu
- Verfahren zur Reduzierung von Werkzeugverschleiß wie Oberflächenbehandlungen und Beschichtungen zu benennen.

Fertigkeiten:

- das Werkstoffverhalten für unterschiedliche Fertigungsverfahren einzuschätzen.
- mögliche Ursachen für Probleme des Werkstoffverhaltens im Fertigungsprozess zu bewerten.
- Wechselwirkungen Design-Fertigungsprozesse-Werkstoffe zu
- geeignete Verschleißschutzverfahren auszuwählen.

Kompetenzen:

- theoretische Grundlagen und Zusammenhänge zwischen Prozess, Design und Werkstoff auf praktische Anwendungen zu übertragen.
- mögliche Ursachen für den Verschleiß an Fertigungsmitteln abzuschätzen.

Studien- und Siehe Studien- und Prüfungsordnung sowie jeweils aktuelle Fassung des **Prüfungsleistungen** Studienplans; die Benotung erfolgt gemäß § 20 der Allgemeinen Prüfungsordnung (APO) der THA in der jeweils gültigen Fassung.

Lehrveranstaltung	C1: Werkstofftechnik für Produktionsingenieure			
Zuordnung zum Modul	С			
Dozent(in)	Prof. Dr. mont. Helmut Wieser			
Lehr- und Lernform/ Semesterwochenstunden	Virtuelle Asynchrone Lehre (VAL), Virtuelle Lehrveranstaltung (VLV): 2 SWS Übung (Ü): 1 SWS			
Arbeitsaufwand	VAL, VLV: 30 h Ü: 15 h Eigenstudium: 45 h			
	Gesamtaufwand: 90 h			
Inhalt	 Arten von Werkstoffen und deren Einteilung Struktur und Eigenschaften von Werkstoffen und deren Beeinflussung durch chemische Zusammensetzung und Fertigungshistorie Metalle: Struktur, Gefüge, Umformverhalten, Vorgänge beim Gießen, Wärmebehandlung Verschleißarten an Fertigungsmitteln und Methoden zur Verschleißminimierung Stähle: Eigenschaften, Legierungselemente, Wärmebehandlung Aluminium: Eigenschaften, Zustandsbeschreibung, Strangpressen Pulvermetallurgische Werkstoffe und 3D-Druck Versagensmechanismen und -ursachen Kunststoffe: Duroplaste und Thermoplaste 			
Literatur	 Berns, H.; Theisen, W.: Eisenwerkstoffe – Stahl und Gusseisen. 3. Aufl. Springer. 2006. Weissenbach, W.; Dahms, M.; Jaroscheck, C.: Werkstoffkunde – Strukturen, Eigenschaften, Prüfung. 19. Aufl. Springer. 2015. Mitchell, B. S.: An Introduction to Materials Engineering and Science. Wiley-Interscience. 2004. 			

Lehrveranstaltung	C2: Seminar Werkstofftechnik für Produktionsingenieure		
Zuordnung zum Modul	С		
Dozent(in)	Prof. Dr. mont. Helmut Wieser		
Lehr- und Lernform/ Semesterwochenstunden	Virtuelle Asynchrone Lehre (VAL), Virtuelle Lehrveranstaltung (VLV): 1 SWS Seminar (S): 1 SWS Übung (Ü): 1 SWS		
Arbeitsaufwand	VAL, VLV, S: 30 h Ü: 15 h Eigenstudium: 45 h		
	Gesamtaufwand: 90 h		
Inhalt	 Problemfälle aus der Fertigungspraxis Tiefziehprozess (Einfluss Temperatur auf das Verformungsverhalten) Spanbruchneigung beim Spanen Schweißbarkeit von verschiedenen Stählen Lunkerbildung beim Gießen Verschleißcharakterisierung an einem Lagerelement 		
Literatur	 Dietrich, J.: Praxis der Umformtechnik – Tiefziehen. 12. Aufl. Springer. 2018. Bürgel, R.; Richard, H.A.; Riemer, A.: Werkstoffmechanik. 2. Aufl. Springer. 2014. 		

Modul		
IMMOTOTOTI		

D: Simulationsstudien

Modulbezeichnung engl.	Simulation Studies
Lehrveranstaltungen	Simulationsstudie Theorie (Auftaktveranstaltung, Einführung; D1) Simulationsstudie Unternehmensleitebene (D2) Simulationsstudie Fertigungsleitebene (D3) Simulationsstudie Fertigungsebene (D4)
Veranstaltungsturnus	Sommer- und Wintersemester
Modulverantwortlich	Prof. DrIng. Stefan Braunreuther
Sprache	Deutsch
Zuordnung zum Curriculum	Masterstudiengang "Produktion", 1. und 2. Semester im Vollzeit-Studium; Teilzeit-Studium siehe S. 3
Verwendbarkeit des Moduls	Das Modul ist ein Pflichtmodul und zentraler Bestandteil des Studiengangs.
Arbeitsaufwand	D1: 90 h D2: 90 h D3: 90 h D4: 90 h
	Gesamtaufwand: 360 h
Credit Points (CP)	12
Voraussetzungen nach Prüfungsordnung	Keine
Empfohlene Voraussetzungen	D1 vor D2, D3, D4 A vor D2 B vor D3 C vor D4
Angestrebte Lernergebnisse	Nachdem Studierende das Modul besucht haben, sind sie in der

Lage,

Kenntnisse:

- verschiedene Ebenen der Simulationsmöglichkeiten zu kennen.
- die unterschiedlichen Methoden und zugehörige Tools benennen zu
- Realprobleme in eine Simulationswelt übersetzen und auch Ergebnisse hieraus ableiten zu können.
- Hierarchieebenen übergreifende Realprobleme zu modellieren.
- wichtige Daten für die Simulationserstellung zu beschaffen.

Fertiakeiten:

- Simulationsmodelle in den verschiedenen Hierarchieebenen aufzusetzen.
- Co-Simulationen zu erstellen.
- Simulationsergebnisse auszuwerten.
- in der Simulation geprüfte Handlungspfade in Form von Entscheidungsalternativen darzustellen.
- Workshops zur Ausgestaltung von Simulationsexperimenten und zugehöriger Datenakquise aufzusetzen und durchzuführen.

Kompetenzen:

- Simulations-Definitions-Workshops durchzuführen.
- eine Simulationstätigkeit in Unternehmen selbständig auszuüben.
- zur Simulation anzuleiten.

Studien- und Siehe Studien- und Prüfungsordnung sowie jeweils aktuelle Fassung des Prüfungsleistungen Studienplans; die Benotung erfolgt gemäß § 20 der Allgemeinen Prüfungsordnung (APO) der THA in der jeweils gültigen Fassung.

Lehrveranstaltung	D1: Simulationsstudie Theorie
Zuordnung zum Modul	D
Veranstaltungsturnus	Sommer- und Wintersemester
Dozent(in)	Prof. DrIng. Stefan Braunreuther, Prof. DrIng. Matthias Kurze, Prof. Dr. mont. Helmut Wieser
Lehr- und Lernform/ Semesterwochenstunden	Virtuelle Asynchrone Lehre (VAL), Virtuelle Lehrveranstaltung (VLV): 3 SWS
Arbeitsaufwand	VAL, VLV: 45 h Eigenstudium: 45 h
	Gesamtaufwand: 90 h
Angestrebte Lernergebnisse	 Nachdem Studierende das Modul besucht haben, sind sie in der Lage, Kenntnisse: verschiedene Modellierungssysteme und deren Funktionsweisen zu beherrschen. die Grenzen der Systeme zu kennen. die Stärken der jeweiligen Systeme in Kombination mit anderen Simulationswerkzeugen zu nutzen. Fertigkeiten: von Realfällen ausgehend Simulationsstudien zu konzipieren. Studien theoretisch auszuarbeiten. Kompetenzen: die Umsetzungen selbst durchzuführen und ihr Wissen in ihr Team zu tragen.
Inhalt	 Theorie der Modellbildung Systematische Beschreibung von Realproblemen Sprachen der Real-Darstellung Finite-Elemente-Methode Finite-Differenzen-Methode Diskrete-Elemente-Methode Kinematik-Simulation Physik-Simulation Ereignis-basierte Simulation
Literatur	 Schmitt, L. T.; Andres, M.: Methoden zur Modellbildung und Simulation mechatronischer Systeme. Springer. Berlin 2019. Zirn, O.; Weikert, S.: Modellbildung und Simulation hochdynamischer Fertigungssysteme. Springer. Berlin 2006.

Lehrveranstaltung	D2: Simulationsstudie Unternehmensleitebene
Zuordnung zum Modul	D
Veranstaltungsturnus	Virtuelle synchrone Anteile: Sommersemester Virtuelle asynchrone Anteile: Sommer- und Wintersemester
Dozent(in)	Prof. DrIng. Stefan Braunreuther
Lehr- und Lernform/ Semesterwochenstunden	Virtuelle Asynchrone Lehre (VAL), Virtuelle Lehrveranstaltung (VLV): 2 SWS Seminar (S, virtuelle synchrone Lehre): 1 SWS
Arbeitsaufwand	VAL, VLV: 30 h S: 15 h Eigenstudium: 45 h
	Gesamtaufwand: 90 h
Angestrebte Lernergebnisse	 Nachdem Studierende das Modul besucht haben, sind sie in der Lage, Kenntnisse: hochspezialisiertes Wissen zur Modellierung von Intralogistikfällen zu erhalten. Systemgrenzen zu ziehen und die Vor- und Nachteile dieser Schnitte kritisch zu hinterfragen. Fertigkeiten: ein Simulationsmodell im Bereich der Intralogistik, Linienübergreifen in der Hierarchie der Unternehmensleitebene aufzubauen. Grundtypen von Simulationsfällen zu individualisieren und auf ihr Problem weiterzuentwickeln. Kompetenzen: das strategische Potenzial dieser Modellierungsart zu nutzen und es in die Geschäftsleitungsebene einzubringen.
Inhalt	 Beschreibung des Modellierungsfalls Einleitung in die Software Modellbildung Verifikation Validierung Simulationsexperimente Hierarchisch verknüpfte Simulation (Co-Simulation)
Literatur	 Gutenschwager, K.; Rabe, M.; Spieckermann, S.; Wenzel, S.: Simulation in Produktion und Logistik. Springer. 2017. K., Rabe; M., Spieckermann, S.; Wenzel, S.: Verifikation und Validierung für die Simulation in Produktion und Logistik. Springer. 2017.

Lehrveranstaltung	D3: Simulationsstudie Fertigungsleitebene
Zuordnung zum Modul	D
Veranstaltungsturnus	Virtuelle synchrone Anteile: Wintersemester Virtuelle asynchrone Anteile: Sommer- und Wintersemester
Dozent(in)	Prof. DrIng. Matthias Kurze
Lehr- und Lernform/ Semesterwochenstunden	Virtuelle Asynchrone Lehre (VAL), Virtuelle Lehrveranstaltung (VLV): 2 SWS Seminar (S, virtuelle synchrone Lehre): 1 SWS
Arbeitsaufwand	VAL, VLV: 30 h S: 15 h Eigenstudium: 45 h
	Gesamtaufwand: 90 h
Angestrebte Lernergebnisse	 Lage, Kenntnisse: über hochspezialisiertes Wissen zur Modellierung von Automatisierungszellen und verketteten Systemen zu verfügen. verschiedenartige mathematische Beschreibungsmethoden, basierend auf der Ereignisdiskretion oder auch physikalischen Effekten, zu nutzen. Fertigkeiten: ein Simulationsmodell im Bereich Automatisierung in der Hierarchie der Fertigungsleitebene aufzubauen. Kompetenzen: Simulationsprojekte zu leiten und die methodischen Simulationsaufbauten zu konzipieren.
Inhalt Literatur	 Modellbasiertes Entwickeln Zellensimulationen industrieller Roboter Prozesssimulationen Einführung in ROS und Bahnplanung
Literatur	 Gausemeier, J.; Lanza, G.; Lindemann, U.: Produkte und Produktionssysteme integrativ konzipieren. Hanser. Koubaa, A.: Robot Operating System (ROS). Springer.

Lehrveranstaltung	D4: Simulationsstudie Fertigungsebene
Zuordnung zum Modul	D
Veranstaltungsturnus	Virtuelle synchrone Anteile: Wintersemester Virtuelle asynchrone Anteile: Sommer- und Wintersemester
Dozent(in)	Prof. Dr. mont. Helmut Wieser
Lehr- und Lernform/ Semesterwochenstunden	Virtuelle Asynchrone Lehre (VAL), Virtuelle Lehrveranstaltung (VLV): 2 SWS Seminar (S, virtuelle synchrone Lehre): 1 SWS
Arbeitsaufwand	VAL, VLV: 30 h S: 15 h Eigenstudium: 45 h
	Gesamtaufwand: 90 h
Angestrebte Lernergebnisse	 Nachdem Studierende das Modul besucht haben, sind sie in der Lage, Kenntnisse: über hochspezialisiertes Wissen zur Modellierung von Fertigungsproblemen zu verfügen. die vielen Fertigungsverfahren auf Basis von Grundelementen zu abstrahieren und auf Ihr Fertigungsproblem anzuwenden. Fertigkeiten: ein Simulationsmodell im Bereich der Prozesse in der Hierarchie der Fertigungsebene aufzubauen. Kompetenzen: durch die Erkenntnisse dieser Simulation maßgeblich zu Prozessentscheidungen, Prozessinnovationen und der Erhöhung Prozessstabilität beizutragen.
Inhalt	 Werkstoffkennwerte und Werkstoffmodelle Umformsimulation Einführung in die Software Berechnung lokaler Umformgrade Verifikation im Versuch
Literatur	 Denkena, B.; Tönshoff, H.: Modellierung und Simulation. In: Spanen. VDI-Buch. Springer. Berlin, Heidelberg 2011. Wagner, M.: Blechumformsimulation. In: Lineare und nichtlineare FEM. Springer Vieweg. Wiesbaden. 2017.

Modul	E: Höhere Mathematik
Modulbezeichnung engl.	Higher Mathematics
Lehrveranstaltungen	Höhere Mathematik
Veranstaltungsturnus	Sommersemester Virtuelle asynchrone Anteile: Sommer- und Wintersemester
Modulverantwortlich	Prof. DrIng. Max Wedekind
Sprache	Deutsch
Zuordnung zum Curriculum	Masterstudiengang "Produktion", 1. Semester im Vollzeit-Studium; Teilzeit-Studium siehe S. 3
Verwendbarkeit des Moduls	Das Modul ist ein Pflichtmodul und zentraler Bestandteil des Studiengangs.
Lehr- und Lernform/ Semesterwochenstunden	Virtuelle Asynchrone Lehre (VAL), Virtuelle Lehrveranstaltung (VLV): 4 SWS Übung (Ü): 2 SWS
Arbeitsaufwand	VAL, VLV: 60 h Ü: 30 h Eigenstudium: 90 h
	Gesamtaufwand: 180 h
Credit Points (CP)	6
Voraussetzungen nach Prüfungsordnung	Keine
Empfohlene Voraussetzungen	Mathematik-Kenntnisse auf Bachelor-Niveau
Angestrebte Lernergebnisse	Nachdem Studierende das Modul besucht haben, sind sie in der Lage, Kenntnisse:

- Differential- und Integralrechnung für Funktionen einer und mehrerer Veränderlicher grundlegend zu kennen.
- die Theorie der linearen Gleichungssysteme und der linearen Abbildungen zu bezeichnen.
- Vektoranalysis und Differentialgeometrie anzuwenden.

Fertigkeiten:

 quantitative Modelle aus den Ingenieurwissenschaften auf mathematischer Grundlage zu verstehen.

Kompetenzen:

- Lösungen gewöhnlicher Differentialgleichungen zu bestimmen.
- Transformationen von Koordinatensystemen aufstellen und berechnen zu können.
- mathematische Grundlagen zur Modellierung dynamischer Systeme anzuwenden.

Inhalt • Grundlagen der Mathematik

- Lineare Algebra: Grundlagen der Gruppentheorie, lineare Abbildungen und Matrizen, Hauptachsentransformationen und Quadriken, Eigenwertanalysen
- Analysis in einer und mehreren Variablen: Differential- und Integralrechnung
- Vektoranalysis: Vektorfelder und Integralsätze
- Grundlagen der Differentialgeometrie: Kurven in der Ebene und im Raum, Mannigfaltigkeiten

Prüfungsleistungen

Studien- und Siehe Studien- und Prüfungsordnung sowie jeweils aktuelle Fassung des Studienplans; die Benotung erfolgt gemäß § 20 der Allgemeinen Prüfungsordnung (APO) der THA in der jeweils gültigen Fassung.

Literatur

- Burg, K.; Haf, H.; Meister, A.; Wille, F.: Höhere Mathematik für Ingenieure. Springer.
- Meyberg, K.; Vachenauer, P.: Höhere Mathematik 1. Springer. 2001.
- Meyberg, K.; Vachenauer, P.: Höhere Mathematik 2. Springer. 2001.

Modul	F: Höhere Mechanik
Modulbezeichnung engl.	Higher Mechanics
Lehrveranstaltungen	Höhere Mechanik
Veranstaltungsturnus	Wintersemester Virtuelle asynchrone Anteile: Sommer- und Wintersemester
Modulverantwortlich	Prof. DrIng. Neven Majić
Sprache	Deutsch
Zuordnung zum Curriculum	Masterstudiengang "Produktion", 2. Semester im Vollzeit-Studium; Teilzeit-Studium siehe S. 3
Verwendbarkeit des Moduls	Das Modul ist ein Pflichtmodul und zentraler Bestandteil des Studiengangs.
Lehr- und Lernform/ Semesterwochenstunden	Virtuelle Asynchrone Lehre (VAL), Virtuelle Lehrveranstaltung (VLV): 3 SWS Seminaristischer Unterricht (SU): 1 SWS Übung (Ü): 2 SWS
Arbeitsaufwand	SU: 15 h Ü: 30 h Eigenstudium: 90 h
	Gesamtaufwand: 180 h
Credit Points (CP)	
Voraussetzungen nach Prüfungsordnung	Keine
Empfohlene Voraussetzungen	Technische Mechanik
Angestrebte Lernergebnisse	 Nachdem Studierende das Modul besucht haben, sind sie in der Lage, Kenntnisse: hochspezialisierte, tiefe ingenieursmechanische Fragestellungen zu kennen. sich in der Modellierung von Realproblemen der Mechanik über Grenzen und Modellierungsgenauigkeit bewusst zu werden. mechanische Probleme mit Hilfe der höheren Mathematik zu lösen und in die Realität rückzuübertragen. Fertigkeiten: sehr komplexe in die Mathematik transferierte Anwendungsfälle zu lösen. verschiedene Lösungsmöglichkeiten für die Problemstellungen zu nutzen.

anzuleiten.

Kompetenzen:

die Mechanikkenntnisse für selbständiges Lösen von Realproblemen

andere in Mechanik und Hintergrundvermittlung im Themenbereich

Inhalt • Hydromechanik

- Elastizitätstheorie
- Spezielle Tragwerke
- Schwingungen kontinuierlicher Systeme
- Stabilität elastischer Strukturen
- Viskoelastizität und Plastizität
- Numerische Methoden

Studien- und Prüfungsleistungen

Siehe Studien- und Prüfungsordnung sowie jeweils aktuelle Fassung des Studienplans; die Benotung erfolgt gemäß § 20 der Allgemeinen Prüfungsordnung (APO) der THA in der jeweils gültigen Fassung.

Literatur

- Gross, D.; Hauger, W.; Wriggers, P.: Technische Mechanik 4. Springer.
- Hauger, W.; Mannl, V.; Wall, W. A.; Werner, E.: Aufgaben zu Technische Mechanik 1-3. Springer.
- Hauger, W.; Mannl, V.; Wall, W. A.; Werner, E.: Aufgaben zu Formenln und Aufgaben zur Technische Mechanik 4. Springer.

G: Unternehmensleitebene: Vertiefung
Company Management: Deepening
Methodenkompetenz (G1) Qualitätsmanagement (G2)
Wintersemester Virtuelle asynchrone Anteile: Sommer- und Wintersemester
Prof. Dr. mont. Helmut Wieser
Deutsch
Masterstudiengang "Produktion", 2. Semester im Vollzeit-Studium; Teilzeit-Studium siehe S. 3
Das Modul ist ein Pflichtmodul und zentraler Bestandteil des Studiengangs.
G1: 90 h G2: 90 h
Gesamtaufwand: 180 h
6
Keine
Keine
 Nachdem Studierende das Modul besucht haben, sind sie in der Lage, Kenntnisse: Problemstellungen aus der Fabrikbetriebs-Sichtweise einzuordnen. verschiedene Methoden für Fabrikbetriebs-Problemstellungen zu kennen und sie gegeneinander abzuwägen. Teile von Methoden zu neuen Ansätzen zu kombinieren. Inhalte und Kernaussagen der ISO 9001 und ISO 14001 wiederzugeben. Methoden der Qualitätssicherung zu benennen. Fertigkeiten: statistische Methoden anzuwenden und auszuführen. Methodenergebnisse zu interpretieren und darzustellen. relevante Q-Normen anzuwenden und zu interpretieren.

Studien- und Siehe Studien- und Prüfungsordnung sowie jeweils aktuelle Fassung des Prüfungsleistungen Studienplans; die Benotung erfolgt gemäß § 20 der Allgemeinen Prüfungsordnung (APO) der THA in der jeweils gültigen Fassung.

ein Analystenteam fachlich zu führen.

einen nachfolgenden Change-Prozess zu begleiten.

Lehrveranstaltung	G1: Methodenkompetenz
Zuordnung zum Modul	G
Dozent(in)	Prof. DrIng. Jürgen Lenz
Lehr- und Lernform/ Semesterwochenstunden	Virtuelle Asynchrone Lehre (VAL), Virtuelle Lehrveranstaltung (VLV): 2 SWS Übung (Ü): 1 SWS
Arbeitsaufwand	VAL, VLV: 30 h Ü: 15 h Eigenstudium: 45 h Gesamtaufwand: 90 h
Inhalt	 Methoden der Projektsteuerung Projektkommunikation Präsentation Unternehmensanalyse Kreativität Bewertung Darstellungen und Handlungsempfehlung Umsetzung und Change Kommunikation Ausgewählte Methoden der Schlanken Produktion o (I4.0-, KI-)Wertstrommethode o SMED o Pull vs. Push o JIT o Kanban o Variantenmanagement o Fließfertigung
Literatur	Lunau, S.; Meran, R.; John, A.; Staudter, C.; Roenpage, O.: Six Sigma + Lean Toolset. Springer. Berlin

Lehrveranstaltung	G2: Qualitätsmanagement
Zuordnung zum Modul	G
Dozent(in)	Prof. Dr. mont. Helmut Wieser
Lehr- und Lernform/ Semesterwochenstunden	Virtuelle Asynchrone Lehre (VAL), Virtuelle Lehrveranstaltung (VLV): 2 SWS Übung (Ü): 1 SWS
Arbeitsaufwand	VAL, VLV: 30 h Ü: 15 h Eigenstudium: 45 h
	Gesamtaufwand: 90 h
Inhalt	 Qualitätsmanagementkriterien nach ISO 9001 ISO 14001: Umweltmanagementsysteme Methoden des Qualitätsmanagements TQM / EFQM Agiles Qualitätsmanagement Branchenspezifische Besonderheiten Dokumentation und Spezifikation Audit – Formen und Vorgehensweisen
Literatur	ISO 9000er NormenfamilieISO 14001

Modul	H: Fertigungsleitebene: Vertiefung
Modulbezeichnung engl.	Production Management: Deepening
Lehrveranstaltungen	Safety (H1) KI in der Produktion (H2)
Veranstaltungsturnus	Wintersemester Virtuelle asynchrone Anteile: Sommer- und Wintersemester
Modulverantwortlich	Prof. DrIng, Jürgen Lenz
Sprache	Deutsch
Zuordnung zum Curriculum	Masterstudiengang "Produktion", 2. Semester im Vollzeit-Studium; Teilzeit-Studium siehe S. 3
Verwendbarkeit des Moduls	Das Modul ist ein Pflichtmodul und zentraler Bestandteil des Studiengangs.
Arbeitsaufwand	H3: 90 h H4: 90 h
	Gesamtaufwand: 180 h
Credit Points (CP)	6
Voraussetzungen nach Prüfungsordnung	Keine
Empfohlene Voraussetzungen	Keine
Angestrebte Lernergebnisse	 Nachdem Studierende das Modul besucht haben, sind sie in der Lage, Kenntnisse: grundlegende Begriffe und relevante Normen der funktionalen Sicherheit und Maschinensicherheit zu kennen. relevante Tools für Datenauswertungen zu kennen und ausgewählte davon bedienen zu können. die Grundlagen hinter den KI-Algorithmen zu verstehen. Fertigkeiten: elektrische Antriebstechnik für sicherheitskritische Anwendungen auszulegen und zu parametrieren. Datenanalysen durchzuführen und ihren Vorgesetzten zu unterbreiten. Kompetenzen: die funktionale Sicherheit von Automatisierungssystemen auf Grundlage relevanter Normen zu beurteilen und zu bewerten. Datenanalysen selbst durchzuführen und ebenso fremde zu bewerten.
Studien- und Prüfungsleistungen	Siehe Studien- und Prüfungsordnung sowie jeweils aktuelle Fassung des Studienplans; die Benotung erfolgt gemäß § 20 der Allgemeinen Prüfungsordnung (APO) der THA in der jeweils gültigen Fassung.

Lehrveranstaltung	H1: Safety
Zuordnung zum Modul	Н
Dozent(in)	DiplIng. Jens-Christian Voss
Lehr- und Lernform/ Semesterwochenstunden	Virtuelle Asynchrone Lehre (VAL), Virtuelle Lehrveranstaltung (VLV): 2 SWS Übung (Ü): 1 SWS
Arbeitsaufwand	VAL, VLV: 30 h Ü: 15 h Eigenstudium: 45 h Gesamtaufwand: 90 h
Inhalt	
Literatur	 Richter, B. (Hrsg.): Anlagensicherheit. Hüthig. 2007. Bender, H. F.: Das Gefahrstoffbuch - Sicherer Umgang mit Gefahrstoffen nach REACH und GHS. Wiley-VCH. 2013. Bundes-Immissionsschutzgesetz BImSchG, geltende Fassung Betriebssicherheitsverordnung BetrSichV, geltende Fassung

Lehrveranstaltung	H2: KI in der Produktion
Zuordnung zum Modul	Н
Dozent(in)	Prof. DrIng. Jürgen Lenz
Lehr- und Lernform/ Semesterwochenstunden	Virtuelle Asynchrone Lehre (VAL), Virtuelle Lehrveranstaltung (VLV): 2 SWS Übung (Ü): 1 SWS
Arbeitsaufwand	VAL, VLV: 30 h Ü: 15 h Eigenstudium: 45 h
	Gesamtaufwand: 90 h
Inhalt	Grundlagen und wesentliche Begriffe der Künstlichen Intelligenz in

- Grundlagen und wesentliche Begriffe der Künstlichen Intelligenz ir der Produktion sowie Datenanalyse
- Vorgehensmodelle der Datenanalyse (u.a. CRISP-DM)
- Einführung in Datenformate und Datenquellen
- Überblick Datenquellen in der Produktion (u.a. Datenbanken, Enterprise Resource Planning Systeme, Maschinensteuerungen)
- Datentransformation
- Überblick zur Kategorisierung von Modellen des Maschinen Lernens nach Lernstilen und Lernaufgaben, u.a.
 - Modelle zur Klassifikation
 - Modelle zur Regression
 - o Modelle zum Clustering
- In den Übungen werden die Teilnehmer in ausgewählte Tools der Datenanalyse eingeführt
- Des Weiteren führen die Teilnehmer die Schritte der Datenanalyse nach dem CRISP-DM-Vorgehensmodell an beispielhaften Datensätzen durch und erlernen so praktische Kenntnisse der Datenanalyse.
- Erarbeitung von Präsentationen zu Anwendungen von Künstlicher Intelligenz in realen Anwendungsfällen der Industrie und Wissenschaft

Literatur •

- Rebala, G.; Ravi, A.; Churiwala, S.: An Introduction to Machine Learning. 2019.
- Alpaydin, E.: Introduction to machine learning. 2010. 2nd ed. MIT Press. Cambridge, Mass.
- Witten, I.H.; Pal, C.J.; Frank, E.; Hall, M.A.: Data mining: Practical machine learning tools and techniques. 2017. 4th ed. Morgan Kaufmann, Cambridge, MA.
- Mohri, M.; Rostamizadeh, A.; Talwalkar, A.: Foundations of machine learning. 2018. 2nd ed.
- Seifert, I.; Bürger, M.; Wangler, L.; Christmann-Budian, S.; Rohde, M.; Gabriel, P.; Zinke, G.: Potenziale der Künstlichen Intelligenz im produzierenden Gewerbe in Deutschland. 2018.
- Weskamp, M.; Tamas, A.; Wochinger, T.; Schatz, A.: Einsatz und Nutzenpotenziale von Data Mining in Produktionsunternehmen. 2014.
- Döbel, I.; Leis, M.; Vogelsang, M. M.; Neustroev, D.; Petzka, H.; Riemer, A.: Maschinelles Lernen: Eine Analyse zu Kompetenzen, Forschung und Anwendung. 2018.

Modul	I: Fertigungsebene: Vertiefung
Modulbezeichnung engl.	Manufacturing: Deepening
Lehrveranstaltungen	Laserfertigungstechnik (I1) Additive Fertigung (I2)
Veranstaltungsturnus	Wintersemester Virtuelle asynchrone Anteile: Sommer- und Wintersemester
Modulverantwortlich	Prof. DrIng. Jürgen Lenz
Sprache	Deutsch
Zuordnung zum Curriculum	Masterstudiengang "Produktion", 2. Semester im Vollzeit-Studium; Teilzeit-Studium siehe S. 3
Verwendbarkeit des Moduls	Das Modul ist ein Pflichtmodul und zentraler Bestandteil des Studiengangs.
Arbeitsaufwand	I1: 90 h I2: 90 h
	Gesamtaufwand: 180 h
Credit Points (CP)	6
Voraussetzungen nach Prüfungsordnung	Keine
Empfohlene Voraussetzungen	Grundlagen der Fertigungstechnik, Konstruktion
Angestrebte Lernergebnisse	 Nachdem Studierende das Modul besucht haben, sind sie in der Lage, Kenntnisse: den Aufbau von Laserfertigungssystemen wiederzugeben. Vor- und Nachteile von Laserbearbeitungen zu kennen. Einsatzszenarien von AM-Lösungen und die Bildung von wirtschaftlichen Prozessketten zu kennen. Fertigkeiten: Laser-Materialbearbeitungsprozessen auszulegen. Laser-Bauteile konstruktiv zu gestalten. den Lasereinsatz zu bewerten. AM-gerecht zu konstruieren. eine AM-Toolchain zu nutzen. Kompetenzen: Fertigungsalternativen bezüglich der Additiven Fertigung zu bewerten. Die Technologiereife bezüglich der Machbarkeit im Laser wie auch AM-Bereich einzuschätzen.
	Siehe Studien- und Prüfungsordnung sowie jeweils aktuelle Fassung des Studienplans; die Benotung erfolgt gemäß § 20 der Allgemeinen Prüfungsordnung (APO) der THA in der jeweils gültigen Fassung

Prüfungsordnung (APO) der THA in der jeweils gültigen Fassung.

Lehrveranstaltung	I1: Laserfertigungstechnik
Zuordnung zum Modul	1
Dozent(in)	Prof. DrIng. Stefan Braunreuther
Lehr- und Lernform/ Semesterwochenstunden	Virtuelle Asynchrone Lehre (VAL), Virtuelle Lehrveranstaltung (VLV): 2 SWS Übung (Ü): 1 SWS
Arbeitsaufwand	VAL, VLV: 30 h Ü: 15 h Eigenstudium: 45 h
	Gesamtaufwand: 90 h
Inhalt	 Grundlagen der Lasertechnik Optik Laserstrahlquellen Strahl-Stoff-Wechselwirkung Laserstrahl-Materialbearbeitung Laserstrahlschweißen Laserstrahltrennen Lasersicherheit Simulation
Literatur	 Hügel, H.; Graf, T.: Laser in der Fertigung. Vieweg und Teubner. 2009. Poprawe, R.: Lasertechnik für die Fertigung, Springer. 2005. Steen, W. M.: Laser Material Processing. Springer. 2003. Landolt-Börnstein: Laser Applications; in: Advanced Materials and Technologies. Springer. 2004.

Lehrveranstaltung	I2: Additive Fertigung
Zuordnung zum Modul	1
Dozent(in)	Prof. DrIng. Jürgen Lenz
Lehr- und Lernform/ Semesterwochenstunden	Virtuelle Asynchrone Lehre (VAL), Virtuelle Lehrveranstaltung (VLV): 2 SWS Übung (Ü): 1 SWS
Arbeitsaufwand	VAL, VLV: 30 h Ü: 15 h Eigenstudium: 45 h
	Gesamtaufwand: 90 h
Inhalt	 Grundlagen der additiven Fertigungsverfahren Markt und Einsatzgebiete Systemtechnik, direkte und indirekte Verfahren AM-Werkstoffe Simulation in der additiven Fertigung AM-fertigungstechnische Konstruktion und Fallbeispiele
Literatur	 Richard, H. A.; Schramm, B.; Zipsner, T.: Additive Fertigung von Bauteilen und Strukturen. Springer. Berlin 2017. Lachmayer, R.; Lippert R. B.: Entwicklungsmethodik für die Additive Fertigung. Springer. Berlin 2020. Möhrle M.: Gestaltung von Fabrikstrukturen für die additive Fertigung. Springer. Berlin 2018.

Modul	K: Masterarbeit
Modulbezeichnung engl.	Master Thesis
Veranstaltungsturnus	Winter- und Sommersemester
Modulverantwortlich	Prof. DrIng. Stefan Braunreuther
Dozent(in)	Dozent(in) der Fakultät für Maschinenbau und Verfahrenstechnik. Mindestens eine/r der Prüfer(innen) muss Professor(in) an der Technischen Hochschule Augsburg sein.
Sprache	Deutsch
Zuordnung zum Curriculum	Masterstudiengang "Produktion", 3. Semester (Teilzeit-Studium: 5. und 6. Semester)
Verwendbarkeit des Moduls	Das Modul ist ein Pflichtmodul; es ist zentraler Bestandteil des Studiengangs und wesentliches Element der Profilbildung der individuellen Ingenieurpersönlichkeit.
Lehr- und Lernform/ Semesterwochenstunden	Masterarbeit Masterkolloquium
Arbeitsaufwand	900 h
Credit Points (CP)	30
Voraussetzungen nach Prüfungsordnung	Die Ausgabe des Themas der Masterarbeit erfolgt in der Regel zu Beginn des 3. Studiensemesters. Die Zulassungsvoraus- setzungen lt. Studien- und Prüfungsordnung sind zu beachten!
Angestrebte Lernergebnisse	Nachdem Studierende die Abschlussarbeit absolviert haben, sind sie in der Lage, ein komplexes praxisbezogenes Thema aus dem Gebiet der Produktion selbstständig auf wissenschaftlicher Grundlage methodisch zu bearbeiten und den Lösungsweg sowie die Ergebnisse zu dokumentieren.
Inhalt	 Analyse der Aufgabenstellung Verfassen einer Kurzzusammenfassung Festlegung der Arbeitsschritte Strukturierung der Aufgabe in einzelne Arbeitsschritte Permanente Überprüfung des Arbeitsfortschrittes Wissenschaftliche Quellenarbeit Strukturierung und Aufbau der Dokumentation Präsentationstechniken
Studien- und Prüfungsleistungen	Siehe Studien- und Prüfungsordnung sowie jeweils aktuelle Fassung des Studienplans; die Benotung erfolgt gemäß § 20 der Allgemeinen Prüfungsordnung (APO) der THA in der jeweils gültigen Fassung.
Literatur	 Stickel-Wolf, C.; Wolf., C.: Wissenschaftliches Arbeiten und Lerntechniken. Erfolgreich studieren - gewusst wie! Springer Gabler. 2022. Kornmeier, W.: Wissenschaftlich schreiben leicht gemacht. UTB. Stuttgart 2011.

- Balzert, H.; Schäfer, C.; Schröder, M.; Kern, U.: Wissenschaftliches Arbeiten - Wissenschaft, Quellen, Artefakte, Organisation, Präsentation. W3L. 2008.
- Entsprechend Empfehlungen des Betreuers.
- Selbst gewählte Literatur, entsprechend der Aufgabenstellung.