
1

Chapter 1

Navigating the World of Data
Visualization

A Case Study
As an engineer, I work with data all the time. I parse log files, analyze data, estimate values, and compare the
results with theory. Things don’t always add up. So I double-check my analysis, perform more calculations, or run
simulations to understand the results better. I refer to previous work because the ideas are similar or sometimes
because they’re dissimilar. I look at the graphs and realize I’m missing some crucial information. So I add the missing
data, but it’s noisy and needs filtering. Eventually, I realize my implementation of the algorithm is poor or that there
is a better algorithm with better results, and so it’s back to square one. It’s an iterative process: tweak, test, and tweak
again until I’m satisfied with the results.

Those are the tasks surrounding research and development (R&D) work. And to be honest, there’s no systematic
method. Most of the time, research is organized chaos. The emphasis, however, should be on “organized”, not
“chaos”. Data should be analyzed and presented in a clear and coherent manner. Sources for graphs should be well
understood and verified to be accurate. Algorithms should be tested and proven to be working as intended. The
system should be flexible. Introducing new ideas and challenging previous methods should be easy, and testing new
ideas on current data should be fast and efficient.

In this book I will attempt to address all the topics associated with data processing and visualization: managing
files and directories, reading files of varying formats, and performing signal processing and numerical analysis in a
high-level programming language similar to MATLAB and GNU-Octave. Along the way, I will teach you Python, a rich
and powerful programming language.

In a nutshell, Beginning Python Visualization deals with the processing, analysis, manipulation, and visualization
of data using the Python programming language. The book covers the following:

Fundamentals of the Python programming language required for data analysis and •	
visualization.

Data files, format, and organization, as well as methods and guidelines for selecting file •	
formats and storing and organizing data to enable fast, efficient data processing.

Readily available Python packages for numerical analysis, signal and image processing, •	
graphing and plotting, and more.

To demonstrate what’s possible, this chapter will present a case study of using Python to gather GPS data, analyze
the data prior to visualization, and plot the results.

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

2

Before we begin, however, you should understand a few fundamentals about Python. Python is an interpreted
programming language. This means that each command is first read and then executed. This is in contrast to
compiled programming languages, where the entire program is evaluated (compiled) and then executed. One of the
important features of interpreted programming languages is that it’s easy to run them interactively. That is, you can
perform a command, examine the results, perform more commands, examine more results, and so on. The ability to
run Python interactively is very useful, and it allows you to examine topics as you learn them.

It’s also possible to run programs, referred to as scripts, non-interactively in Python, and there are
several ways to do that. You can run scripts from the interactive Python prompt by issuing the command
exec(open('scriptname.py').read()). Or you can enter python scriptname.py at the command-line interface of
your operating system. If you’re using IPython, you can issue the command run scriptname.py instead; and if you’re
running IDLE, the Python GUI, you can open the script and press F5 to execute it. The .py extension is a common
convention that distinguishes Python scripts from other files. The case study described in this chapter takes advantage
of scripts, as well as running Python interactively.

Note ■ it is important to be able to distinguish between interactive sessions and python scripts. When code starts
with >>>, it means that the code was run on python interactively. in cases where the ellipsis symbol (. . .) appears, it
means that the code is a continuation of a previously interactively entered command. lines of text following the symbols
. . . or >>> are python’s response to the issued command. a code listing that does not start with >>>is a script written
in an editor; in order to execute it, you will have to save it under scriptname.py (or some other name) and execute it as
described previously.

Gathering Data
We spend considerable time recording and analyzing data. Data is stored in various formats depending on the tools
used to collect it, the nature of the data (e.g., pictures vs. sampled analog data), the application that will later process
the data, and personal preferences. Data files are of varying sizes; some are very large, others are smaller but in larger
quantities. Data organization adds another level of complexity. Files can be stored in directories according to date,
grouped together in one big directory or in a database, or adhere to a different scheme altogether. Typically, the
number of data files or the amount of data per file is too large to allow skimming or browsing with an editor or viewer.
Methods and tools are required to find the data and analyze it to produce meaningful results. As you’ll soon see,
Python provides all the tools required to do just that.

Case Study: GPS Data
You just got a USB GPS receiver for your birthday! You’d like to analyze GPS data and find out how often you exceed
the speed limit and how much time you spend in traffic. You’d like to track data over a year, or even longer. You decide
to record, analyze, and visualize the GPS data in Python.

Some hardware background: most USB GPS receivers behave as serial ports (this is also true for Bluetooth GPS
devices). This means that once a GPS is connected (assuming it’s installed properly), reading GPS data is as simple
as opening the COM port associated with the GPS and reading the values. GPS values are typically clear text values:
numbers and text. Of course, if you’re planning on recording GPS data from your car, it would make a lot of sense to
hook it up to a laptop rather than a desktop.

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

3

Note ■ if you wish to follow along with the remainder of the chapter by issuing the commands yourself and then
viewing the results, you might first want to refer to Chapter 2 and set up python on your system. that said, it’s not
necessary, and you can follow along to get an understanding of the book and its purpose. in fact, i encourage you to
come back to this chapter and read it again after you’ve had more experience with python.

To be able to access the serial port from Python, we’ll use the pySerial module. pySerial, as the name suggests,
allows seamless access to serial ports (the module pySerial requires downloading and installing; see Chapter 2
for details). To use pySerial, we must first read the module to memory, that is, we must import it using the import
command. If all goes well, we’ll be presented with the Python prompt again.

>>> import serial

Scanning Serial Ports
Next, we need to find the serial port parameters: the baud rate and the port number. The baud rate is a GPS
parameter, so it’s best to consult the GPS manual (don’t worry if you can’t find this information, I’ll discuss later
how to “guess” what it is). The port number is determined by your operating system. If you’re not sure how to find
the port number—or if the port number keeps changing when you plug and unplug your GPS—you can use the
following code to identify active serial ports (see Listing 1-1a).

Listing 1-1a. Scanning Serial Ports (Linux)

>>> from serial.tools.list_ports import comports
>>> comports()

[('/dev/ttyS3', 'ttyS3', 'n/a'), ('/dev/ttyS2', 'ttyS2', 'n/a'), ('/dev/ttyS1',
'ttyS1', 'n/a'), ('/dev/ttyS0', 'ttyS0', 'n/a'), ('/dev/ttyUSB0',
'Company name and device info should be here', 'USB VID:PID=xxxx:yyyy')]

Listing 1-1a tells us that there are four serial ports named /dev/ttySn, where n is an integer less than or equal to 3.

There is also a port named /dev/ttyUSB0, and this is the port I’m looking for.
In Windows the code looks slightly different. The reason: the function comport() returns a generator expression

instead of a list of available ports (you will learn more about generator expressions in Chapter 3). Listing 1-1b shows
the Windows version of the script.

Listing 1-1b. Scanning Serial Ports (Windows)

>>> from serial.tools.list_ports import comports
>>> >>> list(comports())

[('COM6', 'Company name and device info', 'USB VID:PID=xxxx:yyyy')]

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

4

This is a rather quick introduction to Python! First, let’s dissect the code line-by-line. The first line,
from serial.tools.list_ports import comports, allows us to access a function named comports(). By using
the import command, we load the function comports() and are able to use it. The function comports() is part of
a module (a module is a collection of functions and data structures) named tools. The package serial is a collection
of modules associated with the serial port, one of which is tools. Accessing modules within packages is performed
using the dot operator. This is something you’ll see a lot of in Python: from package.module import function
(see Chapter 3 for more on this topic).

The second line calls the function comports(); in both the Linux and the Windows versions, it returns a list
of available serial ports. In the Linux version, the list is returned by calling the function comports() directly. In the
Windows version, a rather more complex mechanism is used, called a generator expression. This is a rather advanced
topic and is discussed in Chapter 3, so we will skip it for now. In both versions, the list is composed of pairs of values.
The first value is the location of the serial port, and the second is a description. Write down the serial port location;
you’ll need it for the next section.

Recording GPS Data
Let’s start gathering data. Enter the code in Listing 1-2 and save it in the file, record_gps.py.

Listing 1-2. record_gps.py

import time, serial

change these parameters to your GPS parameters
port = '/dev/ttyUSB0' # in Windows, set this to 'COMx'
ser = serial.Serial(port)

ser.baudrate = 4800
fmt = "../data/GPS-%4d-%02d-%02d-%02d-%02d-%02d.csv"

filename = fmt % time.localtime()[0:6]
f = open(filename, 'wb')
while True:
 line = ser.readline()
 f.write(line)
 print(line)

Note ■ if your gps does not support access through the serial port and you would like to follow along with this
chapter, you can download an example data file from the official website for this book and continue with that.

This time, we’ve imported another module: time. The time module provides access to date and time functions,
and we’ll use those to name our GPS data files. We also introduce an important notion here: comments! Comments
in Python are denoted by the # sign and are similar to C++ double slash notation, //. Everything in the line from that
point onward is considered a remark. If the # sign is at the beginning of a line, then the entire line is a remark, usually
describing the next line or block of code. The exception to the # sign indicating a remark occurs when it is quoted
inside a string, as follows: "#".

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

5

Don’t forget to change the value of the variable port to point at your serial port location as returned from the port
scanning code in Listing 1-1. You should also set the proper baud rate. Determining the baud rate is not complex, but
it’s best to consult the manual. Mine turned out to be 4800; if you’re not sure of yours, you can tweak this parameter.
The script record_gps.py will print the output from the GPS onscreen so you can change the baud rate value (try the
values 1200, 2400, 4800 and 9600) until you see some meaningful results (i.e., text and numbers).

Running record_gps.py (I’ll get to how it works soon) yields GPS data:

>>> exec(open('record_gps.py').read())

$GPRMC,140053.00,A,4454.1740,N,09325.0143,W,000.0,128.7,300508,001.1,E,A*2E
$GPGGA,140053.00,4454.1740,N,09325.0143,W,1,09,01.1,00289.8,M,-030.7,M,,*5E
$GPGSA,A,3,21,15,18,24,26,29,06,22,,03,,,02.0,01.1,01.7*04
$GPGSV,3,1,12,21,75,306,40,15,59,075,46,18,57,269,49,24,56,115,46*79
$GPGSV,3,2,12,26,48,059,43,29,27,188,48,06,25,308,41,22,18,257,33*7D
$GPGSV,3,3,12,08,14,060,,03,11,320,32,09,06,144,,16,04,311,*7C
$GPRMC,140054.00,A,4454.1740,N,09325.0143,W,000.0,128.7,300508,001.1,E,A*29
$GPGGA,140054.00,4454.1740,N,09325.0143,W,1,09,01.1,00289.8,M,-030.7,M,,*59
$GPGSA,A,3,21,15,18,24,26,29,06,22,,03,,,02.0,01.1,01.7*04

Data is being recorded to file as it is displayed. When you wish to stop viewing and recording GPS data, press

Ctrl+C. If you’re running in an interactive Python, be sure to close the serial port once you issue Ctrl+C, or you won’t
be able to rerun the script record_gps.py. To close the port, issue the following command:

>>> ser.close()

It’s also a good idea to close the file:

>>> f.close()

Let’s take a closer look at record_gps.py, to gain insight into how it works. The heart of the script lies in the
following lines of code:

while True:
 line = ser.readline()
 f.write(line)
 print(line)

This is a straightforward implementation. The first line, while True:, instructs that the following block should
be run indefinitely; that is, in an infinite loop. That’s why you need to press Ctrl+C to stop recording. The next
three lines are then executed continuously. They read a line of text from the serial port, store it to file, and print it
to screen. Reading GPS data is carried out by the command line = ser.readline(). Writing that data to a file for
later processing is done by f.write(line). Printing the data to screen so the user has some visual feedback is done
with print(line).

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

6

Note ■ the indentation (the number of spaces) in python is important because it groups commands together.
this is also true when using python in an interactive mode. all lines with the same indentation are considered one block.
python’s indentation is equivalent to C/C++ curly braces—{}.

Data Organization
Let’s turn to selecting file format, file naming conventions, and data location. There isn’t a single, good solution that
fits all cases, but the methodologies and ideas are simple. The method I’ll use here is based on file names. I’ll show
you how to name data files in a way that lends itself easily to automatic processing later on.

File Format
A file format is a set of rules describing the contents of a file. For the GPS problem, we’ll choose the Comma Separated
Values (CSV) file format. CSV files are text files with values separated by commas, as in this example:

$GPGSV,3,2,12,06,43,096,37,07,41,291,38,16,39,052,32,27,34,291,34*76
$GPGSV,3,3,12,19,26,152,35,08,06,280,,10,00,337,,00,00,000,*74
$GPRMC,233547.32,A,4455.6446,N,09329.3400,W,030.1,272.5,040608,001.1,E,A*2E
$GPGGA,233547.32,4455.6446,N,09329.3400,W,1,06,02.8,00299.0,M,-030.7,M,,*5A

CSV is a popular format recognized by most spreadsheets; database applications; and, of course, text editors,

seeing as they’re really just text files. As it turns out, the data the from most USB-GPS receivers is already comma
separated, so all that’s required is to save this information to a file, as-is.

File Naming Conventions
Now let’s look at how to select proper file names for our data files. File names should be unique, so that files won’t
be accidentally overwritten. File names should also be descriptive; that is, they should tell us something about the
contents. Lastly, we’d like the file name extension to tell us how to view the file. The latter is typically achieved by
selecting a proper extension—.csv, in our case. Here are the naming conventions I chose for this example:

File names holding GPS data will start with the text “GPS-”.•	

Next will come the date and time in ISO format, with the separating colons omitted and a •	
hyphen between the date and time: YYYY-mm-dd-HH-MM-SS, where YYYY stands for year,
mm for month, dd for day, HH for hours, MM for minutes, and SS for seconds. In cases where
a value is one digit and two digits are required, the value will be padded with a preceding
zero. For example, the month of May will be denoted by 05, not 5. For additional information
regarding the ISO format, refer to ISO 8601, “Data elements and interchange formats—
Information interchange—Representation of dates and times” (http://www.iso.org).

All files will have a •	 .csv extension.

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

7

Following these conventions, a file name might look like this:

GPS-2008-05-30-09-10-52.csv

Data Location
This is where we store data files:

All data files are stored in the directory, •	 data. All scripts are stored in directory, src. Both
directories are under the same parent directory, Ch1. So, a relative path from src to data
is ../data. We’ll follow this convention throughout the book.

It’s also a good idea to add a •	 Readme.txt file. Readme files are clear text files describing the
contents of a directory, in as much detail as deemed reasonable. Such files typically describe
the data source, data acquisition system, person in charge of data gathering, reason for
gathering the data, and so on. Here’s an example:

Data recorded from a USB GPS receiver, connected to a Lenovo laptop T60.
Data was gathered via the serial port stored to clear text files (CSV).
Measurements were taken to estimate speed and time spent in traffic.
Gathered by Shai Vaingast.
Date: throughout 2008, see file timestamps.

Data Analysis
Once the data is organized and accessible in files, the next step is to extract information. Information can be a value, a
graph, or a report pertaining to the problem at hand.

The idea is to use Python’s scripting abilities and the wide range of readily available packages to write a fully
automated application to process, analyze, and visualize data. Scripts are small pieces of code that are written
relatively quickly in a high-level programming language. The key word here is productivity, the ability to change and
test algorithms and extract results fast. Scripts might not be highly efficient in terms of processing speed, but written
properly, they should not slow down running times. For example, a script might generate graphs or search the hard
drive for data files, analyze log files, and extract the maximum and minimum temperatures. In our case, of course,
we’ll use them to analyze GPS data.

In our GPS case study, we’ll use the following algorithm:

 1. Compile a list of all the data files.

 2. For each file:

a. Read the data.

b. Process the data.

c. Plot the data.

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

8

Walking Directories
To compile a list of all the files with GPS data, we use the function os.walk() provided with the module os, which is
part of the Python Standard Library. To use os, we issue import os:

>>> import os
>>> for root, dirs, files in os.walk('../data'):
... print(root, dirs, files)
...

../data [] ['GPS-2008-05-30-09-00-50.csv', 'GPS-2008-05-30-09-10-52.csv',
'Readme.txt']

Note ■ to be able to change directories within the python interpreter, first issue import os. then, to change to a
directory, issue os.chdir(directory_path). to list directory contents, you can use os.listdir(directory_path).
some interpreters, like ipython, let you use, among other enhancements, shell-like commands such as cd and ls, which
add considerable usability.

The function os.walk() iterates through the directory data and its subdirectories recursively, looking for files
and folders, and then storing the results in variables root, dirs, and files. The second line prints out the root
directory for the search. In our case, that means ../data (notice the relative path), then the subdirectories, and
lastly, the files themselves, in a list. I’ve only recorded two data files thus far; but over time, more data is added to this
folder, and the number of files can increase substantially. Since we have no subdirectories in folder data, the output
corresponding to dirs should be an empty list, which is denoted by [].

Using the function os.walk() is a bit of overkill here. In our case, directory data doesn’t have any subdirectories,
and we could have just as easily listed the contents of the directory using the os.listdir() function call, as follows:

>>> os.listdir('../data')

['GPS-2008-30-05-09-00-50.csv', 'GPS-2008-30-05-09-10-52.csv', 'Readme.txt']

However, os.walk() is very useful. It’s not uncommon to have files grouped together in directories. And within

those directories, you might have subdirectories holding still more files. For example, you might want to group files in
accordance with the GPS that recorded the data. Or if another driver is recording GPS data, you might want to put that
data in a separate subdirectory within your data directory. In those cases, os.walk() is exactly what’s needed.

Now that we have a list of all the files in directory data, we can process only those with the .csv extension. We
can do this using the endswith() function, which checks whether a string ends with “csv”. Files that do not end with
“csv” are skipped using the continue command: continue instructs the for loop to skip the current execution and
proceed to the next element. Files that do end with “csv” are read and processed. To create a full file name path from
the directory and the file name, we use the function os.path.join(), as shown in Listing 1-3.

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

9

Listing 1-3. Processing Only CSV Files

for root, dirs, files in os.walk('data'):
 for filename in files:
 # create full file name including path
 cur_file = os.path.join(root, filename)
 if filename.endswith('csv'):
 y = read_csv_file(cur_file)
 else:
 continue

 # only files with the .csv extension from here on

Reading CSV Files
Our next step is to read the files. Again, we turn to Python’s built-in modules, this time the csv module. Although
the CSV file format is quite popular, there’s no clear definition, and each spreadsheet and database employs its own
“dialect.” The files we’ll be processing adhere to the most basic CSV file dialect, so we’ll use the default behavior of
Python’s csv module. Since we’ll be reading several CSV files, it stands to reason that we should define a function to
perform this task. Listing 1-4 shows this function.

Listing 1-4. A Function to Read CSV Files

def read_csv_file(filename):
 """Reads a CSV file and return it as a list of rows."""

 data = []
 for row in csv.reader(open(filename)):
 data.append(row)
 return data

The first line defines a function named read_csv_file(). CSV file support is introduced with the csv module,
so we have to import csv before calling the function. The function takes one variable, filename, and returns an array
of rows holding data in the file. In other words, every line read is processed and becomes a list, with every comma-
separated value as one element in that list. The function returns an array of such lists, as in this example:

>>> import csv
>>> x = read_csv_file('../data/GPS-2008-06-04-09-03-45.csv')
>>> len(x)

3683

>>> x[10]

['$GPGSV', '3', '3', '12', '29', '10', '040', '', '16', '01', '302', '', '26', '01',
'037', '', '00', '00', '000', '*72']

>>> x[1676]

['$GPGSV', '3', '1', '12', '21', '86', '258', '43', '18', '66', '286', '20', '15', '50',
'059', '45', '24', '44', '126', '43*72']

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

10

len(x) tells us the size of the array of lists. It’s also a crude way for us to ensure that data was actually read into
the array.

The second line in the function is called a docstring, and it is characterized by three quotes (""") surrounding the
text in the following manner: """dosctring""". In this case, a docstring is used to document the function; that is, it
enables us to explain what it does. Issuing the command help(funcname) yields its docstring:

>>> help(read_csv_file)

Help on function read_csv_file in module __main__:

read_csv_file(filename)
 Reads a CSV file and return it as a list of rows.

You should use help() whenever you need a reminder of what a function does. help() can be invoked with

functions as well as modules. For example, the following invokes help on module csv:

>>> help(csv)

Help on module csv:

NAME
 csv - CSV parsing and writing.

DESCRIPTION
 This module provides classes that assist in the reading and writing
 of Comma Separated Value (CSV) files, and implements the interface
 described by PEP 305. Although many CSV files are simple to parse,
 the format is not formally defined by a stable specification and
 is subtle enough that parsing lines of a CSV file with something
 like line.split(",") is bound to fail. The module supports three
 basic APIs: reading, writing, and registration of dialects.

The line data = [] declares a variable named data and initializes it as an empty list. We will use data to store the

values from the CSV file.
The csv module helps us read CSV files by automating a lot of the tasks associated with reading them. I will

discuss CSV files and the csv module in more detail in Chapters 4 and 5; this chapter will only provide an overview.
Here are the steps for reading CSV files with the csv module:

 1. Open the file for reading.

 2. Create a csv.reader object. The csv.reader object has functions that help us read CSV files.

a. Using the csv.reader object, read the data from the file, a row at a time.

b. Append every row to the variable data.

 3. Close the file.

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

11

Let’s try this, a step at a time:

>>> import csv
>>> f = open('../data/GPS-2008-06-04-09-03-45.csv')
>>> cr = csv.reader(f)
>>> for row in cr:
... print(row)

['$GPGSA', 'A', '3', '21', '18', '15', '24', '', '22', '', '', '', '', '', '',
'03.5', '02.2', '02.7*09']
['$GPGSV', '3', '1', '12', '21', '86', '267', '39', '18', '66', '286', '44',
'15', '51', '060', '43', '24', '45', '125', '30*7A']
['$GPGSV', '3', '2', '12', '06', '28', '300', '33', '22', '27', '265', '31',
'03', '18', '312', '27', '29', '15', '185', '31*7C']
['$GPGSV', '3', '3', '12', '09', '15', '138', '31', '16', '00', '301', '',
'19', '00', '332', '', '00', '00', '000', '*70']
['$GPRMC', '140706.24', 'A', '4455.6241', 'N', '09328.0519', 'W', '011.4',
'152.7', '040608', '001.2', 'E', 'A*25']
['$GPGGA', '140706.24', '4455.6241', 'N', '09328.0519', 'W', '1', '04', '03.0',
'00295.1', 'M', '-030.7', 'M', '', '*51']
['$GPGSA', 'A', '3', '21', '18', '15', '24', '', '', '', '', '', '', '', '',
'08.9', '03.0', '08.4*04']

>>> f.close()

First, we open the data file and assign it to variable f. The opened file can now be referred to by the variable
f. Next, we create a csv.reader object, cr. We associate the csv.reader object, cr, with the file f. We then iterate
through every row of the csv.reader object and print that row. Lastly, we close the file by calling f.close(). It is
considered good practice to close the file once you’re done with it; but if you neglect to do so, Python will close the file
automatically once the variable f is no longer in use.

Note ■ You may, after issuing the commands, receive an error similar to this: UnicodeEncodeError: 'charmap'
codec can't encode character '\uABCD'. if this happens, open the gps file in a text editor and make sure the file
contains proper alpha-numeric characters. Be sure to delete lines with non-alpha-numeric characters.

Python also lets you implement cascade functions, where you can call new functions based on the results of other
functions. This process can be repeated several times. Cascading (usually) adds clarity and produces more elegant
scripts. In our case, the variable f isn’t really important to us, so we discard it after we attach it to a csv.reader object.
Instead of the preceding code, we can write the following, by cascading the functions:

>>> cr = csv.reader(open('../data/GPS-2008-06-04-09-03-45.csv')):
>>> for row in cr:
... print(row)

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

12

The same holds true for variable cr, for which we can cascade several functions and generate a more compact
line of code:

>>> for row in csv.reader(open('../data/GPS-2008-06-04-09-03-45.csv')):
... print(row)

While the script might be shorter, there’s no performance gain. It is therefore suggested that you cascade
functions only if it adds clarity; there’s a good chance you’ll be editing this code later on, and it’s important to be able
to understand what’s going on. In fact, not cascading functions might be useful at times because you might need
access to intermediate variables (such as f and cr in our case).

The csv.reader object converts each row we read into a row of fields, in the form of a list. That row is then
appended to a list of rows and stored in the variable data.

Note ■ By now, you’ve seen the dot symbol (.) used several times. its use might be a bit confusing, so an explanation
is in order. the dot symbol is used to access function members of modules, as well as function members of objects
(classes). You’ve seen it in member functions of modules, such as csv.reader(), but also for objects, such as f.read().
in the latter, it means that the file object has a member function read() and that the function is called to operate on
variable f. to access these functions, we use the dot operator. We’ll touch on this again in Chapter 3. lastly, we use the
ellipsis symbol (...) to denote line continuation when interactively entering commands in python.

Analyzing GPS Data
Also known as NMEA 0183, the GPS format contains many header stamps, some of which hold useful information for
our task. Let’s take a closer look at the GPS data:

Each row seems to start with a text header stamp, beginning with the characters •	 $GP.

There are several header stamps (e.g., •	 $GPGSA and $GPRMC).

Additional values follow the header, most of which are numeric.•	

Note ■ NMea stands for the National Marine electronics association; see http://www.nmea.org for more information.
the NMea 0183 data format is described at http://www.gpsinformation.org/dale/nmea.htm.

As mentioned earlier, several $GP header stamps appear in our data files, but we need to determine which ones
exactly are relevant to us. First, it would be nice to know which header stamps from the NMEA standard are even
present in our data files. One option would be to open the files, look for the headers, and jot down every new header
once we see it. Another, of course, would be to use Python to do that for us.

Python is a very high-level programming language. As such, it has built-in support for dictionaries (also known
as associative arrays in Perl), which are data structures that have a one-to-one relationship between a key and a value,
very much like real dictionaries. Traditional dictionaries, however, often have several values for a key; that is, they
have several interpretations (values) for one word (key). You can easily implement this in Python using the dictionary
object, dict, as well by assigning a list value to a key. That way, you can have several entries per one key, because the
key is associated with a list that can hold several values. In reality, it’s still a one-to-one relationship, but enough about
that for now. I’ll cover dictionaries in more detail in future chapters. What we want to do here is use a dictionary object
to hold the number of times a header is encountered. Our key will be the GPS header stamp, and our value will be a
number that indicates occurrence. We’ll increment the value whenever a key is encountered, as shown in Listing 1-5.

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

13

Listing 1-5. Function list_gps_commands()

def list_gps_commands(data):
 """Counts the number of times a GPS command is observed.

Returns a dictionary object."""

 gps_cmds = dict()
 for row in data:
 try:
 gps_cmds[row[0]] += 1
 except KeyError:
 gps_cmds[row[0]] = 1

 return gps_cmds

There are few things to keep in mind about this function. First, the docstring spans multiple lines, which is one
of the key benefits of docstrings. Docstrings will display all the spaces and line breaks as shown in the function itself.
Second, we initialize a variable, gps_cmds, to be our dictionary. We then process every list in the GPS data: we only
care about the first element of every row, as that’s the value that holds the GPS header stamps. We then increment the
value associated with the key: gps_cmds[row[0]] += 1. We use the += operation to increment the value by 1, similar
to how it’s done in C (Python, however, does not use the ++ operator). If the key does not exist, which will happen
whenever we encounter a new header stamp, an exception will be raised. We catch the exception with our except
KeyError statement. In the case of an exception, we set the dictionary value associated with the key to 1.

We can write the function list_gps_commands() even more compactly using the dictionary method get();
see Chapter 3 for details.

Let’s analyze some GPS data:

>>> x = read_csv_file('../data/GPS-2008-05-30-09-00-50.csv')
>>> list_gps_commands(x)

{'$GPGSA': 282, '$GPGSV': 846, '$GPGGA': 282, '$GPRMC': 283}

It turns out there are four distinct GPS headers being generated by my GPS. Of those, only two interest us: $GPGSV,

which holds the number of satellites in view (Hey! It’s really important!); and $GPRMC, which holds location and
velocity information.

What we’d like to do is code a function that takes the GPS data and, whenever the header field is $GPGSV or
$GPRMC, extracts the information and stores it in numerical arrays that will be easier to manipulate later on. Numerical
arrays are introduced with the NumPy module, so we have to import numpy. Since we’ll be using a lot of the
functionality of NumPy, SciPy, and matplotlib, an easier approach would be to import pylab, which imports all these
modules, as follows:

>>> from pylab import *

Note ■ the name PyLab comes from python and MatlaB. the PyLab module provides MatlaB-like functionality
in python.

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

14

Extracting GPS Data
In the case of a $GPGSV header, the number of satellites is the fourth entry. In the case of a $GPRMC header, we have a
bit more interesting information. The second field is the timestamp, the fourth field is the latitude, the sixth field is
the longitude, and the eighth field is the velocity. Again, refer to the NMEA 0183 format for more details. Table 1-1
summarizes the fields and their values in a $GPRMC line.

Table 1-1. $GPRMC Information (Excerpt)

Field Name Index Format

Header 0 $GPRMC (fixed)

Timestamp 1 hhmmss.ss

Latitude 3 DDMM.MMM

Longitude 5 DDDMM.MMM

Velocity 7 VVV.V

We need to keep in mind some caveats regarding the information in $GPRMC. For example, let’s look at the
timestamp of an arbitrary line:

>>> x[12]

['$GPRMC', '140055.00', 'A', '4454.1740', 'N', '09325.0143', 'W', '000.0',
'128.7', '300508', '001.1', 'E', 'A*28']

In this output, the timestamp appears as '140055.00'. This follows the format hhmmss.ss where hh are two digits

representing the hour (it will always consist of two digits—if the hour is one digit, say 7 in the morning, a 0 will be
added before it), mm are two digits representing the minute (again, always two digits), and ss.ss are five characters
(four digits plus the dot) representing seconds and fractions of seconds. There’s also a North/South field, as well as
an East/West field. Here, for simplicity, we assume northern hemisphere, but you can easily change these values by
reading the entire $GPRMC structure.

Note ■ in the iso time format, we’ve used HHMMSS to denote hours minutes and seconds. in this case, we follow
the convention in NMea, which uses hhmmss.ss for hours, minutes, and seconds, and then sets DD and MM to angular
degrees and minutes.

The timestamp string is a bit hard to work with, especially when plotting data. The first reason is that it’s a string,
not a number. But even if you translate it to a number, the system does not lend itself nicely to plotting because there
are 60 seconds in a minute, not 100. So what we want to do is “linearize” the timestamp. To achieve this, we translate
the timestamp as seconds elapsed since midnight, as follows: T = hh * 3600 + mm * 60 + ss.ss.

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

15

The second issue we have is that hh, mm, and ss.ss are strings, not numbers. Multiplying a string in Python does
something completely different than what we want here. In this case, we have to first convert the strings to numerical
values. Specifically, we want to use floating point numbers (i.e., float) because of the decimal point in the string
representing the seconds. This all folds nicely into the following:

>>> row = x[18]
>>> row

['$GPRMC', '140056.00', 'A', '4454.1740', 'N', '09325.0143', 'W', '000.0',
'128.7', '300508', '001.1', 'E', 'A*2B']

>>> float(row[1][0:2])*3600+float(row[1][2:4])*60+float(row[1][4:6])

50456.0

The operator [] denotes the index, so row[0] is the header, and row[1] is the second field of row (counting starts

at zero), which is a string. The first two characters of a string are denoted by [0:2]; cutting characters from a string
is known as string slicing. So, to access the first two characters of the first field, we write row[1][0:2]. Upcoming
chapters will include more about strings and the methods available for slicing them.

Next, we tackle latitude and longitude. We face the same issue as with the timestamp, only here we deal with
degrees. Latitude follows the format DDMM.MMM, where DD stands for degrees and MM.MMM stands for minutes.
This time, we will use degrees; converting the minutes to degrees make the later calculations simpler to follow.
To translate the latitude into decimal degrees, we need to divide the minutes by 60:

>>> row = x[18]
>>> row

['$GPRMC', '140056.00', 'A', '4454.1740', 'N', '09325.0143', 'W', '000.0',
'128.7', '300508', '001.1', 'E', 'A*2B']

>>> float(row[3][0:2])+float(row[3][2:])/60.0

44.9029

For latitude information we require the fourth field, hence row[3]. This example also introduces another

notation, [2:], which refers to the slice of the string from the third character until the end.
It’s important to know that since Python 3.x the default behavior of division has changed. In Python 2.x, the

default division was integer division. In Python 3.x, the default division is a floating-point division. The results from
issuing the expression 100/60 return two different results in Python 2.x and Python 3.x, as follows:

In Python 2.x, dividing 100 by 60 returns the following result:

>>> 100/60

1

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

16

In Python 3.x, it returns the following:

>>> 100/60

1.6666666666666667

To ensure a floating point division in Python 2.x, as common practice, it is a good idea to add a decimal point,

i.e., 100/60.0 (notice the dot zero). Adding a decimal point also works in Python 3.x (although it’s not needed because
floating-point division is the default). But what if you’d like to perform an integer division in Python 3.x? The answer is
simple: use an integer division operator, denoted by //:

>>> 100//60

1

In this book, we will use Python 3.x’s default floating-point division.
It’s also possible to use the function int() to cast values to integer values, as follows:

>>> int(100/60)

1

Longitude information is similar to latitude with a minor difference: longitude degrees are three characters

instead of two (up to 180 degrees, not just up to 90 degrees), so the indices to the strings are different.
Listing 1-6 presents the entire function to process GPS data.

Listing 1-6. Function process_gps_data()

NMI = 1852.0
def process_gps_data(data):
 """Processes GPS data, NMEA 0183 format.

Returns a tuple of arrays: latitude, longitude, velocity [km/h],
time [sec] and number of satellites.
See also: http://www.gpsinformation.org/dale/nmea.htm.
 """

 latitude = []
 longitude = []
 velocity = []
 t_seconds = []
 num_sats = []

 for row in data:
 if row[0] == '$GPGSV':
 num_sats.append(float(row[3]))
 elif row[0] == '$GPRMC':
 t_seconds.append(float(row[1][0:2])*3600 + \

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

17

 float(row[1][2:4])*60+float(row[1][4:6]))
 latitude.append(float(row[3][0:2]) + \
 float(row[3][2:])/60.0)
 longitude.append((float(row[5][0:3]) + \
 float(row[5][3:])/60.0))
 velocity.append(float(row[7])*NMI/1000.0)

 return (array(latitude), array(longitude), \
 array(velocity), array(t_seconds), array(num_sats))

Here are some notes about the process_gps_data() function:

•	 NMI is defined as 1852.0, which is one nautical mile in meters and also one minute on the
equator. The reason the constant NMI is not defined in the function is that we’d like to use it
outside the function, as well.

We initialize the return values •	 latitude, longitude, velocity, t_seconds, and num_sats by
setting them to an empty list: []. Initializing the lists creates them and allows us to use the
append() method, which adds values to the lists.

The •	 if and elif statements are self-explanatory: if is a conditional clause, and elif is
equivalent to saying “else, if.” That is, if the first condition didn’t succeed, but the next
condition succeeds, execute the following block.

The symbol •	 \ that appears on the several calculations and on the return line indicates that the
operation continues on the next line.

Lastly, the return value is a tuple of arrays. A •	 tuple is an immutable sequence, meaning you
cannot change it. So tuple means an unchangeable sequence of items (as opposed to a list,
which is a mutable sequence). The reason we return a tuple (and not a two-dimensional
array) is that we might have different lengths of lists to return: the length of the number of
satellites list may be different than the length of the longitude list, since they originated from
different header stamps.

Here’s how you call process_gps_data():

>>> y = read_csv_file('../data/GPS-2008-05-30-09-00-50.csv')
>>> (lat, long, v, t, sats) = process_gps_data(y)

The second line introduces sequence unpacking, which allows multiple assignments. Armed with all these
functions, we’re ready to plot some data!

Data Visualization
Our next step is to visualize the data. We’ll be relying on the matplotlib package heavily. We’ve already imported
matplotlib with the command from pylab import *, so there’s no additional importing needed at the moment.
It’s time to read the data and plot the course.

Our first problem is that the information is given in latitude and longitude. Latitude and longitude are spherical
coordinates, that is, those are points on a sphere, the earth. But we want a map-like plot, which uses Cartesian
coordinates; that is, x and y. So first we have to transform the spherical coordinates to Cartesian coordinates. We’ll
use the quick-and-dirty method shown in Listing 1-7 to do this; this approach is actually quite accurate, as long as the
distances traveled are small relative to the radius of the earth.

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

18

Listing 1-7. “Quick-and-Dirty” Spherical to Cartesian Transformation

x = longitude*NMI*60.0*cos(latitude)
y = latitude*NMI*60.0

To justify this to yourself, consider the following reasoning: As you go up to the North Pole, the circumference
at the location you’re at gets smaller and smaller, until at the North Pole it’s zero. So at latitude 0°, the equator, each
degree (longitude) means more distance traveled than at latitude 45°. That’s why x is a function of the longitude value
itself, but also of the latitude: the greater the latitude, the smaller a longitude change is in terms of distance. On the
other hand, y, which is north to south, is not dependent on longitude.

The next thing to understand is that the earth is a sphere; and whenever we plot an x-y map, we’re only really
plotting a projection of that sphere on a plane of our choosing. Hence, we denote it by (px,py), where p stands for
“projection.” We’ll take the southeastern-most point as the start of the GPS data projection: (px,py) = (0,0). This
translates into the code shown in Listing 1-8.

Listing 1-8. Projecting the Traveled Course to Cartesian Coordinates

py = (lat-min(latitude))*NMI*60.0
px = (long-min(longitude))*NMI*60.0*cos(D2R*latitude)

Some things to note include:

Variables •	 py and px are arrays of floating-point values. With NumPy, we can operate on entire
arrays seamlessly.

•	 D2R is a constant equal to p/180, converting degrees to radians.

To set the y-axis at the minimum latitude and the x-axis at the minimum longitude, we •	
subtract the minimum latitude and minimum longitude values from latitude and longitude
values, respectively.

GPS Location Plot
Now comes the moment we’ve been waiting for: plotting GPS data. To be able to follow along and plot data, be sure to
define the functions read_csv_file() and process_gps_data() as previously detailed and set the file name variable
to point to your GPS data file. I’ve suppressed matplotlib responses, so that the code is easier to follow:

>>> filename = 'GPS-2008-05-30-09-00-50.csv'
>>> y = read_csv_file('../data/'+filename)
>>> (lat, long, v, t, sats) = process_gps_data(y)
>>> px = (long-min(long))*NMI*60.0*cos(D2R*lat)
>>> py = (lat-min(lat))*NMI*60.0
>>> figure()
>>> gca().axes.invert_xaxis()
>>> plot(px, py, 'b', label='Cruising', linewidth=3)
>>> title(filename[:-4])
>>> legend(loc='upper left')
>>> xlabel('east-west (meters)')
>>> ylabel('south-north (meters)')
>>> grid()
>>> axis('equal')
>>> show()

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

19

Figure 1-1 shows the result, which is rather pleasing.

We’ve used a substantial number of new functions, all part of the matplotlib package: plot(), grid(), xlabel(),
legend(), and more. Most of them are self-explanatory:

•	 xlabel(string_value) and ylabel(string_value) prints a label on the x- and y-axis,
respectively. We use title(string_value) to print a caption above the graph. The string
value in the title is the file name up to the end, minus four characters (so as to not display
“.csv”). We accomplish this by using string slicing with a negative value, which means “from
the end.”

•	 legend() prints the labels associated with the graph in a legend box. legend() is highly
configurable (see help(legend) for details). The example plots the legend at the
top-left corner.

•	 grid() plots the grid lines. You can control the behavior of the grid quite extensively.

•	 plot() requires additional explanation because it is the most versatile. The command
plot(px, py, 'b', label='Cruising', linewidth=3) plots px and py with the color blue
as specified by the character 'b'. The plot is labeled “Cruising”; so later on, when we call the
legend() function, the proper text will be associated with the data. Finally, we set the line
width to 3.

The function •	 axis() controls the behavior of the graph axis. Normally, I don’t call the axis()
function because plot() does a decent job of selecting the right values. However, in this
case it’s important to visualize the data properly. That means we need both the x- and y-axes
with equal increments, so the graph is true to the path depicted. This is achieved by calling
axis('equal'). There are other values to control axis behavior, as described by help(axis).

Figure 1-1. GPS data

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

20

Lastly, •	 gca().axes.invert_xaxis() is a rather exotic addition. It stems from the way we
like to view maps and directions. In longitude, increasing values are displayed from right
to left. However, in mathematical graphs, increasing values are typically displayed from
left to right. This function call instructs the x-axis to be incrementing from right to left, just
like maps.

When we’re done preparing the graph, calling the •	 show() function displays the output.

Matplotlib, which includes the preceding functions, is a comprehensive plotting package, and it will be explored
in greater detail in Chapter 6.

Annotating the Graph
We’d like to add some more information to the GPS graph. For example, we’d like to know where we stopped and
where we were speeding. For this we use the function find(), which is part of the PyLab package. The function
find() returns an array of indices that satisfy the condition. In our case, we want to know the following:

>>> STANDING_KMH = 10.0
>>> SPEEDING_KMH = 50.0
>>> Istand = find(v < STANDING_KMH)
>>> Ispeed = find(v > SPEEDING_KMH)
>>> Icruise = find((v >=STANDING_KMH) & (v <= SPEEDING_KMH))

We also calculate when we’re cruising (i.e., not speeding nor standing) for future processing.
To annotate the graph with these points, we add another plot on top of our current plot. However, this time we

change the color of the plot, and we use symbols instead of a solid blue line. The combination 'sg' indicates a green
square symbol (g for green, s for square); the combination 'or' indicates a red circle (r for red, o for circle).
I suggest you use different symbols for standing and speeding, not just colors, because the graph might be printed
on a monochrome printer. The function plot() supports an assortment of symbols and colors; consult with the
interactive help for details. The values we plot are only those returned by the find() function:

>>> plot(px[Istand], py[Istand], 'sg', label='Standing')
>>> plot(px[Ispeed], py[Ispeed], 'or', label='Speeding!')
>>> legend(loc='upper left')

Figure 1-2 shows the outcome.

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

21

We’d also like to know the direction the car is going. To implement this, we’ll use the text() function, which
allows us to write a string to an arbitrary location in the graph. So, to add the text “Hi” at location (10,10), we issue
the command text(10, 10, 'Hi'). One of the nice features of the text() function is that we can rotate the text at
an arbitrary angle. To plot “Hi” at location (10,10) at 45 degrees, we issue text(10,10, 'Hi', rotation=45). Our
implementation of heading information involves rotating the text “>>>” at the angle the car is heading. We’ll only do
this ten times, so as not to clutter the graph with “>” symbols. Calculating the direction the car is heading at a given
point, i, is shown in Listing 1-9.

Listing 1-9. Calculating the Heading

dx = px[i+1]-px[i]
dy = py[i+1]-py[i]
heading = arctan2(dy, dx)

Although we could have calculated the heading using arctan(dy/dx), I chose to use the function arctan2(dy,dx)
instead. The benefits of using arctan2() over arctan() are twofold: 1) there’s no division that might cause a
divide-by-zero exception in case dx is zero, and 2) arctan2() preserves the angle from -180 degrees to 180 degrees,
whereas arctan() produces values between 0 degrees and 180 degrees only. The following code adds the direction
symbols:

>>> for i in range(0, len(v), len(v)//10-1):
... text(px[i], py[i], ">>>", \
... rotation = arctan2(py[i+1]-py[i], -(px[i+1]-px[i]))/D2R, \
... ha='center')

Notice that I’ve used integer division to calculate the ten indices as follows: len(v)//10-1. The reason:
indices to arrays must be integers, not floats (there’s no 1.37th element in an array).

Figure 1-3 shows the resulting graph.

Figure 1-2. GPS data with additional speed information

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

22

Figure 1-3. GPS graph with heading

Velocity Plot
We now turn to plotting a graph of the speed. This is a lot simpler:

>>> figure()
>>> t = (t-t[0])/60.0
>>> plot(t, v, 'k')
>>> plot([t[0], t[-1]], [STANDING_KMH, STANDING_KMH], '-g')
>>> text(t[0], STANDING_KMH, \
... " Standing threshold: "+str(STANDING_KMH))
>>> plot([t[0], t[-1]], [SPEEDING_KMH, SPEEDING_KMH], '-r')
>>> text(t[0], SPEEDING_KMH, \
... " Speeding threshold: "+str(SPEEDING_KMH))
>>> grid()
>>> title('Velocity')
>>> xlabel('Time from start of file (minutes)')
>>> ylabel('Speed (Km/H)')
>>> show()

We start by opening a different figure with the figure() command. We proceed by changing the timescale units
to minutes, a value easier for most humans to follow than seconds. Selecting the proper units of measurement is
important. Most people will find it easier to follow the sentence “I drove for 30 minutes” as opposed to “I drove for
1800 seconds.” We also set the time axis to start at t[0]. Next, we plot the velocity as a function of the time, in black.
Good graphs require annotation, so we choose to add two lines describing the thresholds for standing and speeding,
as well as text describing those thresholds. To generate the text, we combine the text “Standing threshold” with the
threshold value (after casting it to a string with str()) and use the + operator to concatenate strings. Last, of course,
come the title, x and y labels, and grid. Figure 1-4 shows the final result.

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

23

Figure 1-4. Velocity over time

Subplots
We’d also like to display some statistics. But before we do that, it would be preferable to combine all these plots
(GPS, velocity, and statistics) into one figure. For this, we use the subplot() function. subplot() is a matplotlib function
that divides the plot into several smaller sections called subplots and selects the subplot to work with. For example,
subplot(1, 2, 1) informs subsequent plotting commands that the area to work on is 1-by-2 subplots and that the
currently selected subplot is 1; in other words, it is half of the left side of the plot area. subplot(2, 2, 2) will choose
the top-right subplot; subplot(2, 2, 4) will choose the lower-right subplot. A selection I found most readable in this
scenario is to have the GPS data take half of the plot area, the velocity graph a quarter, and the statistics another quarter.
Each subplot() call should be done prior to calling the plotting commands (e.g., plot()).

Text
Sometimes, the best way to convey information is using text, not graphics. We’ll be limiting our work to the statistics
quarter for this section. Our first task is to get rid of the plot frame and the x and y ticks. We just want a plain canvas to
display text on. We can achieve this by issuing the following:

>>> subplot(2, 2, 4)
>>> axis('off')

The first call to subplot() selects our region of work as the lower-right quarter. The second line removes the axes
and hides the frame box.

It’s time to calculate some statistics. It appears that GPS data is being sent in regular intervals, typically one
second. So, to calculate the time spent standing, in seconds, we calculate the length of the vector Istand. Likewise,
to calculate the time speeding, we can calculate the length of Ispeed. To estimate how much these were in percent
values, we divide the length of the Istand and Ispeed vectors by the length of the velocity vector and multiply by 100.
To calculate the average speed, we use the mean() function, which is part of PyLab.

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

24

We also would like to calculate the total distance traveled. The distance can be calculated as the sum of the
distances between each two consecutive data points. The function diff() returns a vector of the differences of the
input vector:

>>> diff([1, 4, 0, 2])

array([3, -4, 2])

This is really useful because we can now calculate the distance:

>>> sum(sqrt(diff(px)**2+diff(py)**2))

1652.1444099624528

This, in turn, yields the total distance traveled.
To automate the whole process of printing the statistics, we store the text to be printed in the variable stats,

a list of strings. We also use a method of formatting strings similar to C’s printf() function, although the syntax is a
bit different. %s indicates a string, while the %f indicates a float. In our case, %.1f indicates a float with one digit after
the decimal point, and %d indicates an integer. The following generates the statistics text:

>>> Total_distance = float(sum(sqrt(diff(px)**2+diff(py)**2))/1000.0)
>>> Stand_time = len(Istand)/60.0
>>> Cruise_time = len(Icruise)/60.0
>>> Speed_time = len(Ispeed)/60.0
>>> Stand_per = 100*len(Istand)/len(v)
>>> Cruise_per = 100*len(Icruise)/len(v)
>>> Speed_per = 100*len(Ispeed)/len(v)
>>> Stats=['Statistics', \
... '%s' % filename, \
... 'Number of data points: %d' % len(y), \
... 'Average number of satellites: %d' % mean(sats), \
... 'Total driving time: %.1f minutes:' % (len(v)/60.0), \
... ' Standing: %.1f minutes (%d%%)' % \
... (Stand_time, Stand_per), \
... ' Cruising: %.1f minutes (%d%%)' % \
... (Cruise_time, Cruise_per), \
... ' Speeding: %.1f minutes (%d%%)' % \
... (Speed_time, Speed_per), \
... 'Average speed: %d km/h' % mean(v), \
... 'Total distance travelled: %.1f Km' % Total_distance]

To print the text on the canvas, we again use the text() function. This time, we use a for loop, iterating over
every string of the stats list:

>>> for index, stat_line in enumerate(reversed(stats)):
... text(0, index, stat_line, va='bottom')
...
>>> plot([index-.2, index-.2])
>>> axis([0, 1, -1, len(stats)])

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

25

We’ve introduced two new functions. One is reversed(), which yields the elements of stats, in reversed order.
The second is enumerate(), which returns not just each row in the stats array, but also the index to each row.
So when variable stat_line is assigned the value 'Average speed...', the variable index is assigned the value 8,
which indicates the ninth row in stats. The reason we want to know the index is that we use it as a location on the
y-axis. Lastly, the vertical alignment of the text is selected as bottom, as suggested by the parameter va='bottom'
(va is short for vertical alignment).

Tying It All Together
Finally, Listing 1-10 shows the combined code to analyze and plot all GPS files in directory data.

Listing 1-10. Script gps.py

from pylab import *
import csv, os

constant definitions
STANDING_KMH = 10.0
SPEEDING_KMH = 50.0
NMI = 1852.0
D2R = pi/180.0

def read_csv_file(filename):
 """Reads a CSV file and return it as a list of rows."""

 data = []
 for row in csv.reader(open(filename)):
 data.append(row)
 return data

def process_gps_data(data):
 """Processes GPS data, NMEA 0183 format.

Returns a tuple of arrays: latitude, longitude, velocity [km/h],
time [sec] and number of satellites.
See also: http://www.gpsinformation.org/dale/nmea.htm.
 """

 latitude = []
 longitude = []
 velocity = []
 t_seconds = []
 num_sats = []

 for row in data:
 if row[0] == '$GPGSV':
 num_sats.append(float(row[3]))
 elif row[0] == '$GPRMC':
 t_seconds.append(float(row[1][0:2])*3600 + \
 float(row[1][2:4])*60+float(row[1][4:6]))

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

26

 latitude.append(float(row[3][0:2]) + \
 float(row[3][2:])/60.0)
 longitude.append((float(row[5][0:3]) + \
 float(row[5][3:])/60.0))
 velocity.append(float(row[7])*NMI/1000.0)

 return (array(latitude), array(longitude), \
 array(velocity), array(t_seconds), array(num_sats))

read every data file, filter and plot the data
for root, dirs, files in os.walk('../data'):
 for filename in files:
 # create full filename including path
 cur_file = os.path.join(root, filename)
 if filename.endswith('csv'):
 y = read_csv_file(cur_file)
 else:
 continue

 # only files with the .csv extension from here on

 # process GPS data
 (lat, long, v, t, sats) = process_gps_data(y)

 # translate spherical coordinates to Cartesian
 py = (lat-min(lat))*NMI*60.0
 px = (long-min(long))*NMI*60.0*cos(D2R*lat)

 # find out when standing, speeding or cruising
 Istand = find(v < STANDING_KMH)
 Ispeed = find(v > SPEEDING_KMH)
 Icruise = find((v >=STANDING_KMH) & (v <= SPEEDING_KMH))

 # left side, GPS location graph
 figure()
 subplot(1, 2, 1)

 # longitude values go from right to left,
 # we want increasing values from left to right
 gca().axes.invert_xaxis()

 plot(px, py, 'b', label=' Cruising', linewidth=3)
 plot(px[Istand], py[Istand], 'sg', label=' Standing')
 plot(px[Ispeed], py[Ispeed], 'or', label=' Speeding!')

 # add direction of travel
 for i in range(0, len(v), len(v)//10-1):
 text(px[i], py[i], ">>>", \
 rotation=arctan2(py[i+1]-py[i], -(px[i+1]-px[i]))/D2R, \
 ha='center')

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

27

 # legends and labels
 title(filename[:-4])
 legend(loc='upper left')
 xlabel('east-west (meters)')
 ylabel('south-north (meters)')
 grid()
 axis('equal')

 # top right corner, speed graph
 subplot(2, 2, 2)

 # set the start time as t[0]; convert to minutes
 t = (t-t[0])/60.0
 plot(t, v, 'k')

 # plot the standing and speeding threshold lines
 plot([t[0], t[-1]], [STANDING_KMH, STANDING_KMH], '-g')
 text(t[0], STANDING_KMH, \
 " Standing threshold: "+str(STANDING_KMH))
 plot([t[0], t[-1]], [SPEEDING_KMH, SPEEDING_KMH], '-r')
 text(t[0], SPEEDING_KMH, \
 " Speeding threshold: "+str(SPEEDING_KMH))
 grid()

 # legend and labels
 title('Velocity')
 xlabel('Time from start of file (minutes)')
 ylabel('Speed (Km/H)')

 # right side corner, statistics data
 subplot(2, 2, 4)

 # remove the frame and x/y axes. we want a clean slate
 axis('off')

 # generate an array of strings to be printed
 Total_distance = sum(sqrt(diff(px)**2+diff(py)**2)/1000.0)
 Stand_time = len(Istand)/60.0
 Cruise_time = len(Icruise)/60.0
 Speed_time = len(Ispeed)/60.0
 Stand_per = 100*len(Istand)/len(v)
 Cruise_per = 100*len(Icruise)/len(v)
 Speed_per = 100*len(Ispeed)/len(v)
 stats = ['Statistics', \
 '%s' % filename, \
 'Number of data points: %d' % len(y), \
 'Average number of satellites: %d' % mean(sats), \
 'Total driving time: %.1f minutes:' % (len(v)/60.0), \
 ' Standing: %.1f minutes (%d%%)' % \
 (Stand_time, Stand_per), \

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

28

 ' Cruising: %.1f minutes (%d%%)' % \
 (Cruise_time, Cruise_per), \
 ' Speeding: %.1f minutes (%d%%)' % \
 (Speed_time, Speed_per), \
 'Average speed: %d km/h' % mean(v), \
 'Total distance traveled: %.1f Km' % Total_distance]

 # display statistics information
 for index, stat_line in enumerate(reversed(stats)):
 text(0, index, stat_line, va='bottom')

 # draw a line below the "Statistics" text
 plot([index-.2, index-.2])

 # set axis properly so all the text is displayed
 axis([0, 1, -1, len(stats)])
show()

Figure 1-5 shows the final results.

Figure 1-5. Output of gps.py on some GPS data

www.it-ebooks.info

Chapter 1 ■ NavigatiNg the World of data visualizatioN

29

Final Notes and References
The GPS problem described here is research and development in nature: a computation and an intermediate result,
not an end product. Research, or R&D work, especially feasibility studies, requires rapid responses. This means using
readily available tools as much as possible and combining them to get the job done. If those tools are inexpensive, or
free, that’s yet another reason to use them.

Throughout the book, we will examine different packages and modules and show how they may be used to
perform data analysis and visualization. The theme we’ll be following is open software, including software published
under the GNU Public License (GPL) and Python Software Foundation (PSF) license. Examples of these tools include
GNU/Linux and, of course, Python.

There are several benefits to developing data analysis and visualization scripts in Python:

Developing and writing code is quick, which is appealing for research work.•	

Readily available packages further increase productivity and ensure accurate results.•	

Scripts introduce automation. Modifying an algorithm is easily done.•	

Scripts will be numerous and explained in detail, and I aim to cover most of the issues you are likely to encounter
in the real world. Ranging from simple one-liners to the more complex, examples include scripts written in Python
to deal with binary files, to combine data from different sources, to perform text parsing, to use high-level numerical
algorithms, and much more. We’ll pay special attention to data visualization and how to achieve pleasing results in
Python. First though, you have to get the Python environment up and running, which will be covered in the
next chapter.

If you’d like to read more about Python in general (and not necessarily for data analysis and visualization), the
Python official web site is an excellent resource:

Python Programming Language—Official Website, •	 http://www.python.org

Other references used in this chapter include:

•	 pySerial, http://pyserial.sourceforge.net/

“Data elements and interchange formats—Information interchange—Representation of dates •	
and times”, http://www.iso.org

NMEA 0183, •	 http://www.nmea.org and http://www.gpsinformation.org/dale/nmea.htm

www.it-ebooks.info

