
150 | July 2019 | https://www.linuxjournal.com

LINUX IOT DEVELOPMENT: ADJUSTING FROM A BINARY OS TO THE YOCTO PROJECT WORKFLOW

Linux IoT Development:
Adjusting from a
Binary OS to the
Yocto Project Workflow
Introducing the Yocto Project and the benefits of using it in
embedded Linux development.

By Mirza Krak

In embedded Linux development, there are two approaches when it comes
to what operating system to run on your device. You either build your own
distribution (with tools such as Yocto/OpenEmbedded-Core, Buildroot and so
on), or you use a binary distribution where Debian and derivatives are common.

It’s common to start out with a binary distribution. This is a natural approach,
because it’s a familiar environment for most people who have used Linux on a PC.
All the commodities are in place, and someone else has created the distribution
image for you to download. There normally are custom vendor images for
specific hardware that contain optimizations to make it easy to get started to
utilize your hardware fully.

Any package imaginable is an apt install command away. This, of course,
makes it suitable for prototyping and evaluation, giving you a head start in
developing your application and your product. In some cases, you even might
ship pre-series devices using this setup to evaluate your idea and product
further. This is referred to as the “golden image” approach and involves the

151 | July 2019 | https://www.linuxjournal.com

LINUX IOT DEVELOPMENT: ADJUSTING FROM A BINARY OS TO THE YOCTO PROJECT WORKFLOW

following steps:

1. Flash the downloaded Debian image to an SD card.

2. Boot the SD card, log in and make any modifications needed (for example,
installing custom applications). Once all the modifications are complete, this
becomes your golden image.

3. Duplicate the SD card into an image on your workstation (for example,
using dd).

4. Flash the “golden image” to a fleet of devices.

And every time you need to make a change, you just repeat steps 2–4, with one
change—that is, you boot the already saved “golden image” in step 2 instead of
the “vanilla” image.

At a certain point, the approach of downloading a pre-built distribution image
and applying changes to it manually will become a problem, as it does not
scale well and is error-prone due to the amount of manual labor that can lead
to inconsistent output. The optimization would be to find ways to automate
this, generating distribution images that contain your applications and your
configuration in a reproducible way.

This is a crossroad where you decide either to stick with a binary distribution or
move your idea and the result of the evaluation and prototyping phase to a tool
that’s able to generate custom distributions and images in a reproducible and
automated way.

There are, of course, ways to generate custom Debian images, but the problem
here is fragmentation. If you’re using vendor-provided images, they probably have
created their own tools (a bash script wrapper around debootstrap) to generate
those images that you might be able to get access to. The fragmentation results

152 | July 2019 | https://www.linuxjournal.com

LINUX IOT DEVELOPMENT: ADJUSTING FROM A BINARY OS TO THE YOCTO PROJECT WORKFLOW

in very little re-use, and if you decide to change the hardware later but still base
it on Debian, you might need to re-work your process completely, as this might
be using a different set of tools.

The remainder of this article assumes you’ve made the choice to switch to a tool
that’s able to build Linux distributions—specifically the Yocto Project, which is
based on OpenEmbedded-Core. This has some implications, and I try to cover
the key parts.

Here’s a quote from the yoctoproject.org website to give you a quick summary
of the Yocto Project:

The Yocto Project (YP) is an open-source collaboration project that helps
developers create custom Linux-based systems regardless of the hardware
architecture.

The project provides a flexible set of tools and a space where embedded
developers worldwide can share technologies, software stacks,
configurations, and best practices that can be used to create tailored
Linux images for embedded and IOT devices, or anywhere a customized
Linux OS is needed.

Next, let’s look at the key differences when moving from a binary distribution to
the Yocto Project that will impact your workflow.

The Yocto Project Is a Cross-Development Environment
Because the Yocto Project is a cross-development environment, this means the
build and generation of the custom Linux distribution image happens on the host
machine, with the intention of the output running on a target. This could mean
that the host is an x86_64 machine and the target is an ARM-v7—hence, the
“cross-development”.

And, this can be frightening at first; coming from a binary distribution, you might

153 | July 2019 | https://www.linuxjournal.com

LINUX IOT DEVELOPMENT: ADJUSTING FROM A BINARY OS TO THE YOCTO PROJECT WORKFLOW

not have encountered this workflow before. In the “golden image” example, you
perform all the changes on the actual devices, but that’s rarely needed in a Yocto
environment where changes are applied during the build on the host machine,
and you only provision your target device with the output image.

You can read more about cross-compilers on this Wikipedia post. It’s important to
build an understanding of this concept for a more seamless experience with Yocto.

The Yocto Project Is a Ground-Up Approach
The starting point in Yocto is to build a distribution image that contains the
necessities to boot a system, and that is about it. This is, of course, not very
useful on its own, but it’s the foundation that you build upon and where only the
components that you select to be included are included, and nothing else. This
means you’re in full control of the distribution that’s generated, and it can be
tailored for very specific use cases.

Understanding which components make up a Linux distribution might require
additional knowledge acquisition. It’s not normally something that you piece
together when working with binary distributions, as it’s already done by someone
else. A good reference is the Linux From Scratch project, which is a step-
by-step tutorial on how to create your own Linux distribution. It’s essentially
what Yocto does but in an automated fashion. I don’t believe that you need to
understand each step that’s involved in detail, but you can use the LFS book to
get a quick overview of which components can make up a Linux distribution.

The Yocto Project Builds from Source Code
This means instead of working with binary packages, which have been compiled
and packaged by someone else, with the Yocto Project, you work with metadata
that describes how to build packages from source code. This implies that
everything is built from source, including toolchains, Linux kernel images,
bootloader images, applications and more.

The workflow in Yocto to install a package onto your custom distribution is

154 | July 2019 | https://www.linuxjournal.com

LINUX IOT DEVELOPMENT: ADJUSTING FROM A BINARY OS TO THE YOCTO PROJECT WORKFLOW

to change the configuration and rebuild. This is the equivalent of running apt
install on a Debian distribution.

The “build from source” approach is one of the Yocto Project’s strengths in
the flexibility it provides. Using this approach, you can customize every single
package to your needs, and all the changes necessary are applied at build time,
which means the output image will contain all the desired customizations—that is
a big difference compared to working with a “golden image”.

There also are drawbacks to the “build from source” approach. It has significant
impact on the time it takes to construct a distribution image, which typically
ranges in hours in build time, and involves steps such as fetching source code,
unpacking, compiling, installing and so on. Yocto does support a caching
mechanism, meaning that subsequent builds will be much faster and are typically
in the range of minutes instead of hours.

Because Yocto is a resource-heavy tool, a project using it needs to plan for
infrastructure changes and optimizations. This could involve sourcing capable
machines to speed up builds or setting up build servers that can be utilized by
developers but also where one could run automated builds. There are many
optimizations that can be done within Yocto to help speed up builds; you can
read more about it in the Yocto Project Mega-Manual.

The Yocto Project—Open-Source License Compliance
It’s worth mentioning that open-source license compliance is slightly different in
Yocto, because you hold the sources of the produced binaries, in case you need to
re-distribute it—for example, for GPL-licensed code. In a binary distribution, the
source code of the produced binaries are hosted by the distribution.

For more information, see the section Maintaining Open Source License
Compliance During Your Product’s Lifecycle in the Yocto Mega-Manual.

155 | July 2019 | https://www.linuxjournal.com

LINUX IOT DEVELOPMENT: ADJUSTING FROM A BINARY OS TO THE YOCTO PROJECT WORKFLOW

Conclusion
Yocto has a steep learning curve, and you should be prepared for it. Yocto has its
strength in flexibility, but this also adds to the complexity.

It’s fairly easy to do a quick build of a base image, but the hurdle is often moving
from this to creating something custom, and to do this, you’ll need to spend
time reading the Yocto Project Mega-Manual to understand the core concepts.
Here are a few topics to start with:

• The layer structuring and overlays, which includes core layers, board support
package layers and distribution layers.

• The bitbake build engine and how it parses metadata and executes tasks.

• The Yocto Project workflow.

The investment of learning Yocto does come with benefits that will be valuable in
the long-term:

• You will have mastered a tool that gives full insights and control on how
you are building the distribution image. The deeper understanding of the
system definitely will be helpful when debugging problems once products
are in the field.

• You will have a streamlined development workflow with higher automation and
a higher level of reproducibility.

• You will have increased re-usability of the software stack if you decide to
change hardware or plan to release similar products that are based on the
same platform.

• You will gain access to a large community of experienced developers that are

156 | July 2019 | https://www.linuxjournal.com

LINUX IOT DEVELOPMENT: ADJUSTING FROM A BINARY OS TO THE YOCTO PROJECT WORKFLOW

willing to help you along the way.

• You will gain access to a large ecosystem of production-grade software that is
easily integrated into your software stack due to Yocto’s layering design. ◾

Mirza Krak is an embedded Linux solution specialist with the open-source Mender.io project to manage updates for IoT. He has eight
years of experience in the field. He is involved in various other open-source projects and is a Linux kernel contributor. Mirza has spoken
at various conferences including the Embedded Linux Conferences.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

Resources

A large portion of the information and reflections in this article comes from
my experience working in the embedded Linux field and my involvement in
numerous projects that shipped products based on Linux.

Further resources:

• yoctoproject.org

• Yocto Project Mega-Manual

• Yocto Project Wiki

