
Open On-Chip Debugger
– OpenOCD –

Hubert Högl, Dominic Rath
Hubert.Hoegl@fh-augsburg.de, Dominic.Rath@gmx.de

Fachhochschule Augsburg
Fakultät für Informatik

December 15, 2006

Abstract

This paper describes OpenOCD, a free open-source
JTAG debugger for microprocessors with ARM7,
ARM9 and related cores. OpenOCD is an ideal com-
plement for the GNU GCC toolchain for ARM pro-
cessors. It can be controlled from the GNU debug-
ger GDB and from a Telnet commandline interface.
OpenOCD is capable of driving a variety of open
JTAG hardware interfaces and can easily be adapted to
new interfaces. It is licensed under the General Public
License (GPL).

1 Introduction

Due to free and open-source software it has never been
easier to get high-quality cross development software
for a broad range of microcontrollers. This applica-
tion field is mainly dominated by the GNU Compiler
Collection GCC [4], consisting of a C/C++ compiler,
assembler, linker and utilities. Considering especially
the ARM architecture [5], a well-established “arm-
gcc” port is available. When it comes to debugging
the situation gets worse. There is GDB, the GNU De-
bugger [7]. For most architectures GDB comes with
a simulator, so that simulating programs written with
GCC is in general not a problem. The difficulties start
when programs shall run on the target processor under
control of GDB when restricting oneself to only free
software.

Many modern controllers like those from ARM have
“Embedded ICE” (EICE) facilities on chip to get full
control within a debugger over the target program. The
EICE is driven by a “JTAG” port [6], which is a four-
wire synchronous serial port accessible at some pack-
age pins. The JTAG port is often called “TAP” (Test
Access Port).

In contrast to the target hardware a plain GDB has

no concepts of EICE, JTAG and similar details at the
hardware level. GDBs concept of debugging is ex-
pressed in a Remote Serial Protocol (RSP) which is a
simple ASCII high-level protocol to control the debug
process. For example for a memory modify operation
GDB will emit the string M4015cc,2:c320#6d
(address 0x4015cc, size 2 bytes, data 0xc320; the
value 6d after # is a checksum). The RSP specifica-
tion is contained in the GDB documentation. The nec-
essary piece of software between toolchain and target
is in principle a protocol converter from RSP to JTAG
bitstream commands (fig. 1).

ARM

Target

g++ nm

ranlib

gcc

objcopy nm

objdump

cpp

ld

strip

Source

Code
gdb

JTAG

GDB

JTAG

Port

Converter

RSP

"arm−"GCC

Figure 1: The GNU Toolchain, enhanced with the
GPL’ed OpenOCD converter between GDB/RSP and
JTAG bitstream commands. Everything on the gray
background runs on the development (host) computer.

Back in 2004 there were some zero-cost debug so-
lutions for ARM consisting of JTAG control software
and JTAG adaptor. However all of these solutions
seem to have one or more of the following deficien-
cies: not open-source / distribution only as binary,

fixed to MS-Windows platform, poor Linux support,
unstable, support only for a fixed JTAG adaptor, lack
of support for the most recent controllers, support
only for a specific (outdated) GDB. However, beside
the free solutions there exist a number of commercial
products which work very well.

The OpenOCD project [1] started in 2004 to fill
this gap with an open-source software agent sitting be-
tween a GDB compiled for ARM and a JTAG adap-
tor. It began as a diploma thesis with the goal in mind
to write an open-source JTAG-debugger restricted to
ARM7 controllers which can easily be interfaced to
different JTAG adaptors. Until now the feature set and
maturity level has very much improved to nearly that
of commercial debuggers.

In more detail, debugging target code in GDB
via JTAG consists of the interfaces shown in fig.
2. OpenOCD opens two network connctions for
GDB/RSP and Telnet. The debugger and the
OpenOCD server can thus be run on different ma-
chines. New JTAG adaptors can be easily added to
OpenOCD.

Target Hardware

Linux, MaxOS/X, Windows

GDB
Telnet

(OpenOCD)
JTAG Control Software

JTAG Adaptor Hardware

Figure 2: More detailed interfaces when debugging
with GDB and OpenOCD.

2 Overview of ARM Debugging

The ARM core is the CPU of an ARM-based system-
on-chip (SOC). ARM released a series of architectures
of their cores, currently the most important are v4,
v4T and v5T. The architecture corresponds with the
instruction set. The cores can be grouped into core
families, e.g. ARM7T, ARM9T and ARM9E. Besides
the CPU there are a number of other macrocells e.g.

for debugging (D), in-circuit emulation (I), memory
management, caches, DSP extensions (E), 64-bit mul-
tiplication (M) and other purposes.

A system core is a CPU core plus a memory system
unit. For example the ARM720T core as a member
of the ARM7TDMI-S core family has a mixed 8kb in-
struction and data cache, a write buffer and a MMU.
Another example is the ARM920T which is a mem-
ber of the ARM9TDMI family with separate instruc-
tion and data chaches, each 16kb and a MMU. See the
following table for a few architectures, core families,
system cores, and concrete chips.

Arch. Core Family System Core Chip
v4 StrongARM
v4T ARM7TDMI (a)

ARM720T (h)
ARM7TDMI-S (d)

ARM720T
ARM9TDMI ARM920T (b)

ARM922T (c)
ARM940T

v5TE ARM9E ARM946E-S TBD
ARM966E (e)

ARM9EJ ARM926EJ-S TBD

XScale PXA2xx (f)
IXP4xx (f)
IOP3xx (f)

v7m Cortex Cortex M3 (g)

Currently OpenOCD successfully has been used
with Atmel AT91R40008 (a), AT91SAM7 (a),
AT91RM9200 (b), Analog Devices ADuC70xx (a),
Cirrus EP93xx (b), Hynix/Hyundai HMS30C7202 (h),
Intel XScale (f), Luminarymicro LM3S811 (g), Mi-
crel KS8695PX (c), NetSilicon NET+50 (a), NS7520
(a), NXP (Philips) LPC2xxx (d), Samsung S3C44B0
(a), S3C2410 (b), Sharp LH7A404 (c), ST Microelec-
tronics STR7x (a), STR9x (e), TI MSP470 (a). Prob-
ably many more devices including those from other
manufacturers will immediately work. Devices with
ARM926E system core like the Atmel AT91RM9261,
Samsung S3C2412, Philips LPC3xxx and Hilscher
NETX 500 will soon be supported.

ARM7 cores have a 3-stage (fetch – decode – exe-
cute) and ARM9 cores have a 5-stage (fetch – decode –
execute – memory – writeback) pipeline. The ARM7
has a von-Neumann architecture. The ARM9 has a
Harvard architecture, i.e. it internally uses two sepa-
rate busses for instructions and data. Note that this text
ignores most of the differences in debugging the core
families ARM7 and ARM9.

Like most other modern microcontrollers the ARM
system-on-chip uses JTAG as the main interface for
controlling the debugging process. JTAG was origi-
nally invented for board level tests (boundary scan)
and is now used for additional tasks like CPLD pro-
gramming, FPGA configuration (in general in-system
programming features) and core debugging. JTAG ist
described in the IEEE standard 1149.1 [6]. Chip man-
ufacturers add chip-specific functionality e.g. for de-
bugging. Section 3.2 gives an overview of the JTAG
port.

The basic idea behind JTAG is a state machine
which is navigated by the TMS (Test Mode Select) sig-
nal, see fig. 3.

Run/Idle Select−DR

Capture−DR

Shift−DR

Exit−DR

Pause−DR

Exit2−DR

Update−DR

Select−IR

Capture−IR

Shift−IR

Exit−IR

Pause−IR

Exit2−IR

Update−IR

Reset

0

1

1

0 1

1

0

0

1

0

0

0

1

1

0

0

1

0 0

1

1 1

1

0

1

0

0

0 01 1

1

Figure 3: The JTAG state machine. The bold bits at
the arcs indicate the TMS signal. A TMS bit at the
upper left corner indicates a state transition to itself.

The above state diagram is used to transfer instruc-
tions and data into and out of the JTAG registers of
the ARM system core. A quick overview of the JTAG
registers is given in fig. 4. The mandatory JTAG reg-
isters are marked by a gray background, the others are
extensions of the ARM architecture.

Instruction

TDI TDO

Chain 1 (Core Debug)

Chain 2 (EmbeddedICE)

Chain 15 (CP15)

IDCODE

Chain 0 (Boundary Scan)

Bypass

Figure 4: ARM JTAG scan chains.

The basic instructions which can be scanned into the
JTAG instruction register are SCAN N, INTEST, ID-
CODE, BYPASS and RESET. SCAN N selects one of
the chains 0 (Boundary Scan), 1 (Core Debug), 2 (Em-
beddedICE), and 15 (CP15).

Debugging is fully controlled over the JTAG port.
The core can be forced by JTAG operation (beside
other methods, see below) into a debug state in which
it is halted so that the full execution state can be ex-
amined and modified. Scan chain 1 is connected to
the system bus to scan instructions and data into the
core pipeline and read resulting data. While in debug
state the main clock is replaced by a debug clock which
is generated by a specific state transition in the JTAG
state machine (see fig. 3). However there is an option
to execute single instructions at system speed. After
the debugging action has completed the core can be
restarted for normal operation.

The crucial points when “manually” feeding code
into the pipeline are to satisfy the dependencies for
pipeline processing and to exactly save the previous
execution state. This is even more important when
cache maintenance and memory management is in-
volved for more feature-rich system cores.

For doing in-circuit debugging another building
block is necessary – the EmbeddedICE (EICE) macro-
cell, shown in fig. 5. EICE implements typical de-
bugger functionality, most importantly breakpoints,
watchpoints and single stepping. The EICE is con-
trolled by 16 registers which are accessed by scan
chain 2.

Debug Control

Debug Status

DCC Control

DCC Data

4 0 31

rw

Watchpoint 0 Addr/Data/Control

Watchpoint 1 Addr/Data/Control

16

0

Chain 2 (EICE)

Figure 5: EmbeddedICE macrocell

The debug control register is responsible to enter
debug state. Also both watchpoint units can be the
source of events to enter debug state. Each of the
watchpoints 0 and 1 consists of six registers (address
value and mask, data value and mask, control value
and mask). Due to their general design these registers
can hold a breakpoint (stop at instruction), a watch-
point (stop at data access) or can be ignored. These
are hard break- or watchpoints. Contrast this with soft
breakpoints which are set by replacing an instruction
in memory by a specific instruction which forces the
core into debug state. It is clear that soft breakpoints
only work for writeable memory (RAM). Programs in
ROM can only use hard breakpoints. Single stepping
is achieved on some cores by adequately configuring
both watchpoint registers. Others, e.g. the ARM920T
have a single step bit in the debug control register.

When in debug state the debugger can examine the
system state, i.e. the core registers, by scanning a
“store multiple” instruction (STM) into scan chain 1,
followed by two NOP instructions. At the 4th debug
clock cycle the given registers are pushed out of the
pipeline so that their value can be read with chain 1.
For the status registers CPSR and SPSR there are other
instructions to be pushed into the pipeline.

To run certain instructions at system speed about the
following has to be done (this is different for ARM7
and ARM9): shift the “fast” instruction with other nec-
essary instructions into the pipeline and mark a spe-
cific bit in scan chain 1 (BREAKPT or SYSSPEED).
Then load RESTART into the JTAG TAP controller
and enter the Run/Idle state. After that the core resyn-
chronizes to the main clock and executes the fast in-
struction, followed by re-entering the debug state. A
typical example for instructions which only run at sys-
tem speed are memory accesses, e.g. LDM (load mul-
tiple) and STM (store multiple).

When control is passed back from the debugger to
the target application a few steps have to be taken.

First, the execution context has to be restored. The
context comprises CPSR, all core registers and the
program counter. They are restored with MSR, LDM
and LDR with PC as destination respectively. Next
a branch instruction with the desired continuation ad-
dress must be clocked into the pipeline. Finally a
RESTART instruction must be shifted into the TAP
controller to run the branch at system speed (as de-
scribed in the previous paragraph).

Until now we only talked about halt-mode debug-
ging, which means the debugger can interact with the
target only in halted mode. By way of a facility in the
EICE called Debug Communication Channel (DCC)
the debugger and the target can communicate even
when the target is in the running state. In fig. 5 the two
32-bit DCC registers for data and control can be seen.
The DCC control register contains bits to synchronize
the asynchronous processor and the debugger. From
the target the DCC registers can be accessed by co-
processor 14 transfer functions MRC (ARM register
to coprocessor) and MCR (coprocessor to ARM reg-
ister). By using the DCC certain debugger operations
like downloading larger amounts of data is about a fac-
tor of 3 to 4 faster than in debug mode. When using
DCC communication it is in general also advantageous
to configure one or more working areas in RAM. This
is an OpenOCD concept to reserve regions in target
RAM to speedup certain debugger commands. It is se-
lected by an entry in the configuration file (see section
3.4).

3 Architecture and Implementation

OpenOCD is a server program with the following
tasks:

• It offers a GDB remote serial protocol (RSP) net-
work socket on default port 3333.

• It offers a Telnet network socket on default port
4444.

• It reads a configuration file with target specific
configuration commands.

• It accesses the target processor over one of sev-
eral JTAG hardware interfaces.

• It writes log data.

Fig. 6 shows the main components of the OpenOCD
environment.

Openocd
"monitor"

Server
GDB

Server
Telnet

Network

3333 4444

insight

gdb

Client

Telnet

Eclipse

Conf LogJTAG Adaptor

ARM Target

DDD, Emacs

Figure 6: The OpenOCD environment.

A typical invocation specifies a debug level and
a configuration file, e.g. openocd -d2 -f
mytarget.cfg. The configuration file contains
commands which adjust OpenOCD for a specific tar-
get (see section 3.4).

During startup and operation the server will write
log data to standard output. The log levels ERROR (0),
WARNING (1), INFO (2) and DEBUG (3) are defined.

After the server is running, the user may connect
to the GDB part of the server with arm-gdb or with
arm-insight ([20]). Now the user is able to inter-
act with the target using all the debugger commands
described in the GDB documentation [7]. The alterna-
tive OpenOCD Telnet interface is a commandline in-
terface for a large number of commands which are not
available within the debugger except for a few which
are available both in the GDB interface and in the Tel-
net interface. Currently the following functionality
needs extra user commands: Server handling (shut-
down, exit), Target management (targets, reg, poll,
wait halt, halt, resume, reset, soft reset halt), JTAG
(jtag speed, scan chain, endstate, jtag reset, runtest,
statemov, irscan, drscan) and Flash memory manage-
ment (banks, info, probe, erase, write, protect and oth-
ers).

The GDB “monitor” command forwards commands
entered on the GDB command interface to the Telnet
server. GDB ignores these commands.

Implementation

The trunk revision of OpenOCD currently (rev 121)
comprises 23,220 Ansi-C sourcelines, counted accord-
ing to the “SLOCCount” method [25]. It compiles on
Linux, Embedded Linux, MacOS/X and also natively
on Windows.

The source code is divided into several modules as
shown in fig. 7. An arrow from module A to module
B indicates that module B calls functions from module
A.

Server

JTAG

Telnet−Serv. GDB−Serv.

Command

Target

Flash
Log

Helper

Figure 7: OpenOCD modules.

The main() function is located in file
trunk/src/openocd.c. It initializes all
other modules, starting with the Server. The server
is divided in the part handling Telnet and in the part
handling GDB RSP commands. A central position
has the Command module because it allows to register
commands offered by nearly all other modules. About
100 user- and configuration commands exist (see [3]).

A few minor helper modules are the interpreter (de-
fine variables and run scripts), the log module (used by
nearly all other modules) and the commandline parser.

3.1 Target Module

The Target module in directory target/ is prob-
ably the most complex of all. Each supported
core family has its own source file, currently
this is arm7tdmi.c, arm720t.c, arm9tdmi.c,
arm920t.c and arm966e.c. Support for
ARM926EJ-S and ARM946E-S is currently being im-
plemented. Two additional OpenOCD branches pro-
vide support for Cortex-M3 (cortex m3.c) and Xs-
cale (xscale.c).

These files are complemented by code to han-
dle the common operations defined in the ARM
v4/v5 architecture and in the ARM7/ARM9 core fam-
ily. The corresponding files are armv4 5.c and
arm7 9 common.c. For systems with MMU and

cache additional code is in armv4 5 cache.c and
armv4 5 mmu.c.

An interface to access the EICE registers is de-
fined in embeddedice.c. Normal core registers
are accessed through register.c. Breakpoints
and watchpoints are managed in a linked list in file
breakpoint.c. Support functions to construct al-
gorithms in target RAM used for Flash memory pro-
gramming are located in algorithm.c.

A disassembler supporting ARM v4/v5 is provided
to reconstruct the assembler code from ARM machine
code (arm disassembler.c).

The features of the JTAG interface for ARM system-
on-chip are implemented in arm jtag.c. It builds
on the generic JTAG interface in directory jtag/.

3.2 JTAG Module

The OpenOCD software drives the target processors’
JTAG port by a JTAG interface (or “adaptor”). Fig.
8 shows the main JTAG signals which must be pro-
vided by a JTAG adaptor. The main signals for data
exchange are TDI (Test Data In) and TDO (Test Data
Out). Data is shifted synchronously to TCK (Test
ClocK), similar to the SPI standard. The data shifted
into TMS leads to state transitions in the JTAG state
machine shown in 3.

The maximum JTAG clock should be substantially
lower than the main clock of the processor. TCK fre-
quencies from 500 KHz to 25 MHz are typical.

e.g.

Ethernet

USB

Par.−Port

TDI

TDO

TCK

TMS

System RESET

Tap RESET

V_Target

L
ev

el
 T

ra
n

sl
at

io
n

JTAG

Adaptor

ARM

Target

RS−232

Linux)
(Windows,

to PC

Figure 8: The most important JTAG signals.

At the rising edge of TCK the TMS, TDI and TDO
signals are sampled. At the falling TCK edge new sig-
nals can be fed to TMS and TDI and a new output level
appears on TDO.

In general two different reset signals for the TAP
(TRST) and for the target system (SRST) are provided.
The system reset signal can be read back to detect tar-
get resets. Correctly resetting the target and starting

debugging from reset state is prohibited by some pro-
cessors. In this case the processor must run for a while
and then be reset (option run and halt). Debug-
ging a target starting from the first instruction is only
possible when the two reset signals are independently
available and when the core has no protection for do-
ing this.

For interfacing the PC to the external world a num-
ber of possibilities exist. The PC Parallel Port can
easily be interfaced to external hardware. The Wig-
gler [8] is a very much used open-documented paral-
lel port JTAG adaptor with a maximum JTAG clock
speed of about 400 kHz (identical with the maximum
port access speed). The Chameleon POD product
by Amontec [10] is a universal parallel port adaptor
which can be configured as Wiggler or as JTAG Accel-
erator, beside many other configurations. The Accel-
erator achieves a faster JTAG clock by shifting the par-
allel port data with hardware support. The Accelerator
is also free and was suggested by the OpenOCD author
and implemented by Amontec. One of the disadvan-
tages of the parallel port is that it has been dropped in
many new notebooks and desktop PCs.

Universal Serial Bus (USB) is todays technology to
interface to peripherals according to the “plug-and-
play” slogan. We early have built an open USB-
to-JTAG interface [9] using the FTDIChip device
FT2232C [14]. This USB device controller is cur-
rently the only one with a Multi-Protocol Synchronous
Serial Engine (MPSSE) capable to directly drive a
JTAG port. This feature makes building a JTAG in-
terface with up to 6 MHz JTAG clock a trivial task
– except for the optional level translation part of
the schematic. Please note that new non-commercial
JTAG interfaces should also be licensed under a free
license, i.e. schematic and PCB should be available to
the public.

A few commercially available interfaces have been
derived from this USB device, e.g. [11], [12], [13] and
[15].

The typical download speed to RAM ranges be-
tween 30 kbyte/sec and 120 kbyte/sec.

An elegant way to avoid a separate JTAG adaptor is
to integrate the adaptor on the target board. Recently
the Cortex-M3 evaluation kits by Luminarymicro [16]
have taken this approach. By adding a FT2232L to
the boards only a single USB connection is needed for
power supply, JTAG debugging and serial port access.

There are also other approaches to build a JTAG
interface. With an external CPLD or FPGA for the
JTAG data ser-/deserialization nearly every microcon-
troller, e.g. a ARM7 or ARM9, can drive a JTAG

port at a speed up to 25 MHz. Some of these con-
trollers have even smart synchronous engines config-
urable to drive JTAG ports, e.g. the two Atmel ARM9
devices AT91RM9200 and AT91SAM9261. A typi-
cal network-enabled embedded system built with these
controllers is even able to run the whole OpenOCD
software, thus building an intelligent Ethernet enabled
debugger box is a relatively straightforward task.

Note that we are restricted when commercial JTAG
adaptors are to be used with OpenOCD. Since most
commercial adaptors have a proprietary (closed) in-
terface specification they can not be driven by open-
source software.

The code in directory jtag/ is organized as fol-
lows: The main JTAG support functions e.g. for state-
machine navigation are contained in jtag.c. JTAG
commands can be put into a linked listed. The selec-
tion of a specific JTAG interface is controlled during
compile-time, not at runtime. Each hardware interface
has its own file ft2232.c, amt jtagaccel.c
and parport.c. All interfaces which do “bit
banging” on digital I/O lines, e.g. parport, use
bitbang.c.

3.3 Flash Memory

Many system-on-chip devices contain some amount
of Flash memory ranging in size from about 32K to
512K. Moreover Flash memory devices ranging from
about 1M to 16M can be added to the external address-
and databus of the microcontroller (see fig. 9). Flash
programming is a task which is strongly related to the
debugging process, therefore OpenOCD has support
for it.

external

Intel CFI

Flash

internal

lpc2x at91sam str7x str9x

Figure 9: Flash memory support

Programming of the internal Flash memory can be
implemented in different ways. The best write perfor-
mance is usually achieved when Flash writing and ver-
ification is handled by short routines which OpenOCD
transfers to working areas, which are reserved re-
gions in target RAM. These routines write blocks of
the Flash memory which have previously been trans-
fered to other working areas. This kind of Flash pro-
gramming is currently implemented for the targets

LPC2xxx, STR7x/STR9x and external CFI devices.
For example the Flash write and erase-check routines
for CFI Flash devices are located in working areas on
the target.

Another strategy for internal Flash programming is
currently used for the AT91SAM7x devices. This de-
vice offers an Embedded Flash Controller (EFC) with
a buffer for Flash memory pages. The EFC imple-
ments a set of commands to write, erase and status
check of the internal Flash memory.

3.4 Configuration Files

The configuration file contains the following configu-
ration groups:

• Server (daemon) configuration

• JTAG interface configuration

• JTAG scan chain configuration

• Target configuration

• Flash configuration

The target configuration comprises the selection of
an ARM core family, endianness, reset mode, position
in the JTAG chain and the variant of the ARM core
family.

The following is a configuration file for the Philips
LPC2294 from the ARM7TMDI-S core family. The
server runs with default port numbers and speaks to a
“JTAGkey” interface from Amontec. The JTAG speed
is 2 MHz (6 MHz / (2+1)). The reset pins are con-
figured with the hint that an active SRST also initi-
ates an active TRST. The jtag device command is
for ARM chip identification. The target configuration
says that the target will be reset on server startup. The
ARM SOC is an ARM7TDMI-S (r4). After a hard re-
set of the target number 0 it will run for 30 msec, then
the debug request will be triggered. For fast down-
loads a 16kb working area at the starting address of
the internal SRAM will be used which is not backed
up.

#daemon configuration
telnet_port 4444
gdb_port 3333

#interface
interface ft2232
ft2232_device_desc "Amontec JTAGkey A"
ft2232_layout jtagkey
ft2232_vid_pid 0x0403 0xcff8

jtag_speed 2

reset
reset_config trst_and_srst \

srst_pulls_trst

#jtag scan chain
jtag_device 4 0x1 0xf 0xe

#target configuration
daemon_startup reset
target arm7tdmi little \

run_and_halt 0 arm7tdmi-s_r4
run_and_halt_time 0 30

working_area 0 0x40000000 0x4000 \
nobackup

#flash configuration base, size, 0, 0
variant, target#, cclk(kHz), checksum
flash bank lpc2000 0x0 0x40000 0 0 \

lpc2000_v1 0 14765 calc_checksum

A detailed description of all OpenOCD configura-
tion file commands is far beyond this paper. A com-
plete description of all configuration commands and
other sample configuration files can be found at [1].

3.5 PLD Programming

Many Programmable Logic Devices (PLD) have a
JTAG interface for programming. The OpenOCD soft-
ware contains two modules that cope with PLDs. The
PLD module can configure Xilinx Virtex2 FPGAs.
The XSVF module is a player for Xilinx XSFV vector
files.

4 Debugger Front Ends

4.1 The GNU Debugger

The plain GDB user interface is a text-only spartanic
interface, which is nevertheless very functional (the
authors of this paper like it!). After the (gdb) prompt
the user may enter commands for the debugger. Note
that your gdb executable may have a different file-
name. For example to connect to the OpenOCD server
a target remote command specifying a computer
and a portnumber must be entered:

hhoegl@egg:˜$ arm-gdb
GNU gdb 6.4.50.20060226-cvs
...
(gdb) target remote localhost:3333

A slightly more comfortable text-based user inter-
face can be invoked when starting gdb with the “text
user interface” (tui):

hhoegl@egg:˜$ arm-gdb --tui

4.2 Emacs

The Emacs Editor [17] can also control the GDB de-
bugger. The Emacs command M-x gdb invokes the
traditional GDB interface via gdb-ui.el, which is
distributed with Emacs. An improved interface starts
with M-x gdbmi which is based on gdb-mi.el,
contained in the GDB distribution. At [18] is a small
tutorial how to debug in Emacs.

4.3 DDD

The Data Display Debugger (DDD) [19] is a graphical
front-end for GDB. It is invoked with the actual gdb
debugger specified by the --debugger option:

ddd --debugger arm-gdb \
--command=init.gdb

Some initial GDB commands can be written in the
file given by the --commmand option. See [19] for
more information about DDD.

4.4 Insight

The Insight debugger [20] is another attempt to realize
a graphical user interface for GDB. It is different from
DDD in that it also contains the full GDB source code.
The user interface code is written in Tcl/Tk.

4.5 Eclipse

Eclipse [21] is a huge development environment which
can also be used to write and debug C or C++ code.
The C features are implemented in the C/C++ Devel-
opment Tooling (CDT).

See the tutorial [22] about Eclipse and OpenOCD by
James P. Lynch.

5 Development process

OpenOCD is an open-source project hosted on
the open-source mediator Berlios (http://www.
berlios.de/). The source code is managed with
the Subversion (SVN) revision control system [24].
The SVN command to check out the current revision
is

http://www.berlios.de/
http://www.berlios.de/

svn co http://svn.berlios.de/svnroot/
repos/openocd

After a local copy of the sources has been checked
out the program can be compiled and installed. A short
description about the installation process is in the text
file trunk/INSTALL, also read trunk/README.

OpenOCD users which need some guidance are in-
vited to visit the public forum at [2]. Be sure to first
search through the archive to find answers to similar
questions. If you would like to post a new question
please add the OpenOCD version information (SVN
revision) and add an excerpt of the log output to make
it easier to locate possible bugs.

People interested in the development of OpenOCD
should subscribe to the openocd-development
mailing list at http://developer.berlios.
de/mail/?group id=4148

Patches should be submitted to http:
//developer.berlios.de/patch/
?group id=4148

6 Summary and Future Improve-
ments

OpenOCD is probably the most stable and feature-
rich open-source JTAG debugger for ARM controllers.
The open sourcecode is an ideal basis for adding
additional functionality like cores, flashes, boundary
scan, programmable logic, and others. It is also a
solid basis for doing experiments and research in the
field of debug technology. The OpenOCD software is
complemented by a number of open and also cheap
closed/commercial JTAG adaptors. It is very easy to
integrate new JTAG adaptors based on an arbitrary
technology.

The author of the software, Dominic Rath, actively
maintains the source code with the help of a few other
contributors. To help the project you may give a dona-
tion to it as described at the homepage [1].

Room for future improvements

• High-speed JTAG interfaces based on Ether-
net/Embedded Linux and high-speed USB

• Support for Coresight Serial Wire Debug

• Support for Boundary Scan testing

• Support for the Boundary Scan Description Lan-
guage (BSDL)

• Support for IEEE 1532 in-system configuration

• More support for programmable logic

• Support for real-time trace data, collected by the
Embedded Trace Macrocell (ETM)

• Get more test users

• Add targets from other manufacturers, e.g. Pow-
erPC and MIPS.

7 Further Information

[1] Home of the OpenOCD
http://openocd.berlios.de

[2] OpenOCD Forum
http://www.sparkfun.com/
cgi-bin/phpbb/index.php

[3] OpenOCD Quick Reference
http://www.fh-augsburg.
de/∼hhoegl/proj/openocd/
oocd-quickref.pdf

[4] GNU Compiler Collection
http://www.gnu.org/software/gcc

[5] Advanced Risc Machines (ARM). Most of the
ARM documentation can be downloaded here,
e.g. the ARM Architecture Reference Manual
and reference manuals for the core families.
http://www.arm.com.

[6] IEEE Standard 1149.1-2001 Test Access Port
and Boundary-Scan Architecture. Available
from
http://ieeexplore.ieee.org.

[7] Homepage of the GNU Debugger
http://www.gnu.org/software/
gdb/

[8] The Wiggler JTAG adaptor
http://andras.tantosonline.com/
wiggler.htm

[9] USBJTAG adaptor
http://www.fh-augsburg.de/
∼hhoegl/proj/usbjtag/usbjtag.
html

[10] Amontec, supplier of various JTAG adaptors
http://www.amontec.com

http://developer.berlios.de/mail/?group_id=4148
http://developer.berlios.de/mail/?group_id=4148
http://developer.berlios.de/patch/?group_id=4148
http://developer.berlios.de/patch/?group_id=4148
http://developer.berlios.de/patch/?group_id=4148
http://openocd.berlios.de
http://www.sparkfun.com/cgi-bin/phpbb/index.php
http://www.sparkfun.com/cgi-bin/phpbb/index.php
http://www.fh-augsburg.de/~hhoegl/proj/openocd/oocd-quickref.pdf
http://www.fh-augsburg.de/~hhoegl/proj/openocd/oocd-quickref.pdf
http://www.fh-augsburg.de/~hhoegl/proj/openocd/oocd-quickref.pdf
http://www.gnu.org/software/gcc
http://www.arm.com
http://ieeexplore.ieee.org
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
http://andras.tantosonline.com/wiggler.htm
http://andras.tantosonline.com/wiggler.htm
http://www.fh-augsburg.de/~hhoegl/proj/usbjtag/usbjtag.html
http://www.fh-augsburg.de/~hhoegl/proj/usbjtag/usbjtag.html
http://www.fh-augsburg.de/~hhoegl/proj/usbjtag/usbjtag.html
http://www.amontec.com

[11] Amontec JTAGkey USB to JTAG adaptor
http://www.amontec.com/jtagkey.
shtml

[12] Amontec JTAGkey-Tiny USB to JTAG adaptor
http://www.amontec.com/
jtagkey-tiny.shtml

[13] Olimex ARM-USB-OCD USB to JTAG adaptor
http://www.olimex.com

[14] FTDIChip Homepage
http://www.ftdichip.com

[15] Signalyzer JTAG adaptor
http://www.signalyzer.com

[16] LuminaryMicro Homepage
http://www.luminarymicro.com

[17] Emacs Text Editor
http://www.gnu.org/software/
emacs/

[18] Nick Roberts, Emacs Mode for GDB
http://linuxjournal.com/
article/7876

[19] The Data Display Debugger (DDD)
http://www.gnu.org/software/
ddd/

[20] The Insight debugger
http://sources.redhat.com/
insight/

[21] Eclipse IDE for C programming
http://www.eclipse.org/cdt/.

[22] James P. Lynch, Using Open Source Tools
for AT91SAM7S Cross Development, Rev.
2, Oct 8 2006, 145 pages (covers Eclipse and
OpenOCD)
http://www.atmel.com/dyn/
resources/prod documents/
atmel tutorial source.zip

[23] Michael Fischer, Yet Another GNU ARM
Toolchain
http://www.yagarto.de/howto/
yagarto1/index.html

[24] Subversion revision control
http://subversion.tigris.org

[25] D. A. Wheeler, SLOCCount User’s Guide
http://www.dwheeler.com/
sloccount/sloccount.html

http://www.amontec.com/jtagkey.shtml
http://www.amontec.com/jtagkey.shtml
http://www.amontec.com/jtagkey-tiny.shtml
http://www.amontec.com/jtagkey-tiny.shtml
http://www.olimex.com
http://www.ftdichip.com
http://www.signalyzer.com
http://www.luminarymicro.com
http://www.gnu.org/software/emacs/
http://www.gnu.org/software/emacs/
http://linuxjournal.com/article/7876
http://linuxjournal.com/article/7876
http://www.gnu.org/software/ddd/
http://www.gnu.org/software/ddd/
http://sources.redhat.com/insight/
http://sources.redhat.com/insight/
http://www.eclipse.org/cdt/
http://www.atmel.com/dyn/resources/prod_documents/atmel_tutorial_source.zip
http://www.atmel.com/dyn/resources/prod_documents/atmel_tutorial_source.zip
http://www.atmel.com/dyn/resources/prod_documents/atmel_tutorial_source.zip
http://www.yagarto.de/howto/yagarto1/index.html
http://www.yagarto.de/howto/yagarto1/index.html
http://subversion.tigris.org
http://www.dwheeler.com/sloccount/sloccount.html
http://www.dwheeler.com/sloccount/sloccount.html

	Introduction
	Overview of ARM Debugging
	Architecture and Implementation
	Target Module
	JTAG Module
	Flash Memory
	Configuration Files
	PLD Programming

	Debugger Front Ends
	The GNU Debugger
	Emacs
	DDD
	Insight
	Eclipse

	Development process
	Summary and Future Improvements
	Further Information

