
Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 1 of 20

The Many Ways of Programming

an ARM
®
 Cortex

®
-M

Microcontroller

Joseph Yiu May-2013

Abstract
Besides the C and C++ programming languages which most software developers use, various

programming methods and languages are available for microcontroller programming. For example,

the ARM® Cortex®-M microcontrollers can be programmed in Java™, Arduino™, high level graphical

programming languages, and other language abstractions. This paper introduces various

development environments, interesting features and other aspects such as interoperability with the

ARM CMSIS device driver libraries. We will also examine how some of these new technologies help

us to address some of the new advanced application areas like M2M, modeling based software

development, as well as how some of these solutions enable new users to start learning

microcontroller programming.

1 - Introduction
In the last few years we have seen an increasing number of microcontroller vendors offering 32-bit

microcontrollers based on ARM® Cortex®-M processors. With more and more embedded system

developers starting to use 32-bit microcontrollers for their projects, we are also seeing

i) Many programming language previously only available for desktop computer being ported

to ARM microcontrollers

ii) New programming language and development suites developed for ARM microcontrollers.

This momentum is driven by a number of factors:

- Technology

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 2 of 20

- Ecosystem

- Applications

- Design Cycles

1.1 Technology
A large part of the changes happen only in the last few years because limitations in legacy

architectures made it difficult or less efficient to use high level language to program. For example,

the memory size is often limited and the performance might not be sufficient.

With modern microcontrollers based on ARM Cortex-M processors, you can see that many of them

can run at over 100MHz and the performance (e.g. CoreMark/MHz) is higher than desktop

processors you used 10 years ago. The ARM processors are also very C friendly and designed with

OS support in mind. So there is no issue with using any high level language which might requires high

performance or need to have OS supports.

1.2 Ecosystem
The open nature of the ARM architecture allows software tool vendors to develop new tools for a

wide range of microcontroller products from different vendors. If the same development was

focused on other architectures, their products could only reach a small market.

1.3 Applications
The wider adoption of ARM processors in the microcontroller industry provides an opportunity for

various programming tools vendors to create diverse application development environments, and

many of these can be significant to particular embedded segments. For example, beside traditional

development suites, we also see software development solution focus on:

- M2M and Internet of Things (IoT) solutions (e.g. Java™)

- Scientific and Mathematic applications (e.g. MathWorks® Inc MatLab®/SimuLink®, National

Instruments™ LabVIEW™)

- Education and hobbyists market (e.g. Arduino™, mbed)

- Control and FSM designs (e.g. IAR VisualSTATE®, Verum® ASD:Suite®)

- Alternate programming languages (e.g. Ada, Pascal, Basic)

1.4 Design Cycles
As time to market is getting more important, more designers prefer to use high level language to

help reducing the time to spend on creating low level task code or porting codes. For example, use

of Java language might help software developers to create and test applications before the

hardware is available, use of Arduino and mbed enables designer to create working prototype

quicker and easier.

The rest of this paper gives a high level overview of some of these development suites and insight of

various software integration aspects.

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 3 of 20

2 - Java
Java™ technology provides numerous advantages such as software investment capitalization for

developers and prototyping capabilities to speedup concepts specification. It is also a hot topic due

to its potential in Internet of Things (IoT) and Machines to Machines (M2M) applications. Some of

you might not be aware that there are multiple Java development environments available from

different vendors: Oracle® (www.oracle.com/javame) and IS2T (www.is2t.com/en/products-microej-

sdk-std.php) are two of the examples.

2.1 - Java ME Embedded - Oracle
First let’s start from the Java ME (Micro Edition) Embedded from Oracle®. A key target of the Oracle

Java on ARM® architecture is IoT and M2M applications. Using the Java ME Software Development

Kits (SDK), you can develop Java applications with Eclipse and Netbeans (netbeans.org) IDE

(Integrated Development Environment).

The Java ME provides a software development that is identical to the Java SE Embedded (Standard

Edition, Embedded). But when the application is built, you select which target platform to use (e.g.

Micro Edition, Standard Edition). When Java ME is select, the Byte Code object (.class) generated is

optimized with small memory foot print. The byte code object file is then loaded and executed on

top of the Java VM. If you use an API not available in Java ME, the IDE will inform you that the

particular class is not available.

For example, you can have a microcontroller running the Java ME Embedded, and Java applications

can be stored on a SD card, or on chip. When the system is started, the Java ME Embedded can read

a configuration file (a text file) and identify the Java application to load and executed.

Java SDK
Java

Application

Java object

(byte code)
SD Card

Java ME

Virtual Machine

ARM Cortex-M based

microcontroller

Java VM on

desktop

Source level debugging

Figure 1 : Design flow using Java ME Embedded

When comparing Java ME to Java SE, some of the features on Java SE are currently not available on

Java ME. For example, currently the GUI library component, or JavaFX, is not available on Java ME.

http://www.oracle.com/javame
http://www.is2t.com/en/products-microej-sdk-std.php
http://www.is2t.com/en/products-microej-sdk-std.php

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 4 of 20

Figure 2 : Different flavors of Java platform for ARM processors

Java objects execute in a sandboxed environment, typically called Java Virtual Machine. With Java

ME, currently you need typically 256KB of RAM and 1 to 1.5MB of program ROM to host the

application and the JVM. Due to the nature of JVM, the applications running inside JVM cannot

guarantee real time behavior. However, since the JVM itself runs on top of a RTOS inside an

embedded system, additional tasks with real time requirements can run as other application threads

and communicate with Java applications inside JVM though an event communication interface.

Real Time Operating System

Real Time

task

Real Time

task

Java

Application

Java

Application

Java

Application

Device

Driver

Libraries

Hardware

Peripheral

APIs

Java ME

Virtual Machine

Figure 3 : Software architecture of combining Java applications with real time applications

Source level debugging is available on :

 desktop environment,

 simulated environment, or

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 5 of 20

 on actual hardware.

The Java execution environment contains an optional debug agent (running on target hardware),

which can communicated with the debugger via a built-in Device Manager (running on debug host).

The communication channel can be UART, TCP/IP, USB, etc.

However, currently there is no integrated solution for source level debugging of the complete

system (Java applications + real time applications) on hardware.

A key value of using Java ME is to enable a consistent environment for Internet of Things (IoT)

applications where Java codes developed can be used from small microcontroller systems, to

internet gateway or home server, to large database server. For example, data are often collected

with small embedded system and then passed on to server applications. On the other hand, some of

these embedded systems can also subscribe information from servers. Java technology enables the

software developer to integrate these information transfer functionalities easily.

The consistency between Java ME and Java SE make it possible to develop Java applications that

work across different embedded platforms.

The Java ME also provides TCP/IP communication APIs that allows Java applications to open TCP/IP

sockets and communicate with other devices. In addition, you can potentially add other 3rd party

communication stacks like Bluetooth. Optional APIs are available for server/client communications,

allowing small microcontroller system to talk to Oracle database servers seamlessly.

The nature of Java sandboxed environment can help provide better security, but at the same time

can be inconvenient for control tasks. Java ME has added peripheral APIs to make this easier, but

unlike traditional C programming, the peripheral APIs are fairly high level and might not able to

support many device specific features. In those cases you might want to separate some of these I/O

control tasks and run them as application threads alongside with the JVM in an RTOS environment.

2.2 – MicroEJ, STM32Java – IS2T
For some embedded system designers, the microcontrollers they use only have several hundred KB

of flash and RAM and this limitation makes the current version of Oracle Java ME virtual machine

unsuitable. To solve this problem, another company called IS2T has a Java product called MicroEJ®

which uses a different approach. The MicroEJ is also available as part of the STM32Java SDK product

from STMicroelectronics (www.stm32java.com).

Instead of loading the byte code object directly to the virtual machine, the Java object is first

optimized and preprocessed and linked off board before loading on to the microcontroller.

http://www.stm32java.com/

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 6 of 20

Java SDK
Java

Application

Java object

(byte code)

SOAR

(smart linker) :

Pre-processing and

Link (partial or full) on

desktop

MicroJvm

(Virtual Machine)

ARM Cortex-M based

microcontroller

Java VM on

desktop

Source level debugging

Figure 4 : Design flow using IS2T MicroEJ or STM32Java

This arrangement has several advantages:

- Quicker start up time. For example, on ARM Cortex®-M3/M4 processor-based

microcontrollers running at 120MHz, it only takes 2ms to boot up.

- Smaller memory requirement. The MicroJvm® virtual machine can fit into a microcontroller

as minimum memory requirements are 28KB of flash memory and 1KB of SRAM (not

including application code). Even with an additional rich GUI Human Machine Interface

(HMI) library, it only needs 90KB to 140KB of flash overall.

- Better optimization because the preprocessing and linking are carried out on a personal

computer, which is more powerful then the microcontroller.

The potential drawback is that the microcontroller cannot dynamically download at run-time Java

byte code objects, which is not an issue for majority of embedded applications.

The MicroJvm virtual machine in MicroEJ confronts all requirements for Java VM (VM engine, error

check, security, memory optimizer (i.e. garbage collection).

For application developers, the MicroEJ SDK product is a quick way to develop applications with

feature-rich GUI (graphic user interface). The MicroEJ product contains various choices of Java

Platform (JPF). Java Platform (JPF) includes the root components as well as additional packages:

MicroJvm virtual machine, standard libraries such as B-ON + CLDC (core embedded Java API),

MicroUI™ (embedded user interface), MWT (Micro Widget Toolkit, an embedded widgets

framework), NLS (embedded national support), runtime PNG image decoder, and graphical tools for

the design of fonts, front panels and story boards.

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 7 of 20

C application parts Java application parts

external

Real Time

Operating

System

(optional)

C libraries

(e.g. Device

Driver)

Root components

BON+CLDC

SNI SP

Scheduler

Smart RAM

optimizer

MicroUI

(User

Interface)

pack

Other

packages

Microcontroller Hardware

Java Platform (JPF)

Figure 5: Components in Java platform (JPF)

Java applications can access to device driver library functions (usually in C) through SNI (ESR012,

Simple native Interface) or SP (Shield Plug). C code can also call Java methods. For example, an

example for Java application to access a C function is as followed:

package com.corp.examples;

public class Hello {

 public static void main(String[] args){

 int i = printHelloNbTimes(s);

 }

 public static native int printHelloNbTimes(int times);

}

And the C function is declared with SNI:

#include <sni.h>

#include <stdio.h>

jint Java_com_corp_examples_Hello_printHelloNbTimes(jint times){

 while (--times){

 printf("Hello world!\n");

 }

 return 0 ;

}

Similarly, C code can also call Java object:

#include <sni.h>

void main(){

 SNI_callJavaVoidMethod(Java_com_corp_examples_Hello_printHelloNbTimes, 3);

 }

And the Java object being called is defined as:

package comp.corp.examples;

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 8 of 20

public class Hello {

 public static void printHelloNbTimes(int times){

 while (--times >= 0) {

 System.out.printfln("Hello world!");

 }

 }

}

The MicroJvm virtual machine contains its own task scheduler called green thread. It needs a timer

hardware for periodic interrupt generation. This allows the MicroJvm virtual machine to run on its

own, and can also be run within a single task with a third party RTOS.

Figure 6: Software architecture in mixed Java and native code (e.g. C, assembly) applications

One of the key attractions of MicroEJ is the graphic library support. With the Object Oriented nature

of Java language and the automatic memory management, Java is excellent for handling of dynamic

GUI components in GUI designs. MicroEJ has a library pack called UI (User Interface) which provides

user interface components and allow developers to create GUI in short time. The graphic library

supports various operation modes to enable the applications to work in different types of

microcontroller platforms (i.e. different types of graphic buffer types).

The MicroEJ development include an Eclipse based IDE, and contains a simulator for designing Java

applications on desktop. The simulator has an Hardware In the Loop API to extend it with real I/O,

allowing simulations to run with true inputs. It also includes a Front Panel Designer tool that permits

the design of a virtual device.

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 9 of 20

Figure 7: Transfer of software development environment

3 - Scientific and Mathematic applications

3.1 – MATLAB®/Simulink®
Recently (February-2013) MathWorks® Inc announced their work with ARM and STMicroelectronics

to enable MATLAB and Simulink design support on ARM Cortex-M processor-based microcontrollers.

At the time of writing the Embedded Coder support for ARM Cortex-M series processors has not

been officially released, but a demonstration was shown in the Embedded World Conference in

Nuremberg, Germany.

MATLAB and Simulink are commonly used for mathematical computations. MATLAB is normally text

based, and Simulink provides a graphical development environment that allows you to define

computations in block diagrams.

The Embedded Coder generates C code from MATLAB or Simulink designs. The code generated will

support the CMSIS-DSP library and will be optimized for the Cortex-M series processors. The design

will also contains built in support for peripherals on STM32F4 (Cortex-M4) microcontrollers.

MATLAB / SimuLink

+

Embedded Coder
Optimized Code

Generation

Keil MDK-ARM

3
rd

 party

development

tool for ARM

(IAR EWARM,

Atollic

TrueStudio)

Connector

Plugin

Processor in the

Loop (PIL) simulation

Debug

Adaptor ARM Cortex-M based

microcontroller

Figure 8: Microcontroller software development flow using Simulink with traditional tools

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 10 of 20

The model based software development allows quicker development time. For example, a motor

control system can by developed by first creating a model of the control system in Simulink:

ARM

Cortex-M
Control algorithm

(Software model)

System

Input

Inverter and Motor

(model)

M

System

Analysis

Figure 9: Example control application – a motor control system – simulated in Simulink

The model can be tested using simulation inside Simulink. Once the design is working, the user can

then use Embedded Coder to generate the C code, and test the design in hardware using Processor-

In-the-Loop (PIL) configuration.

Control algorithm

(Software model)

System

Input

Inverter and Motor

(model)

M

System

Analysis

ARM

Cortex-M

Keil Microcontroller

Development Kit

(MDK-ARM)

R
u

n

C
o

m

U
S

B

ULINK2
Designed with Real-Time Library

KEIL

An ARM
®
 Company

TM

ULINK2, an example of

USB debugger adaptor

Motor

Processor-In-the-

Loop (PIL)

simulation

Figure 10: Running example control application in Simulink with Processor-in-the-Loop (PIL)

Finally, you can add peripheral control code to your project, generate the complete project and test

the whole design fully on target hardware.

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 11 of 20

ARM

Cortex-M

Keil Microcontroller

Development Kit

(MDK-ARM)

R
u

n

C
o

m

U
S

B

ULINK2
Designed with Real-Time Library

KEIL

An ARM
®
 Company

TM

ULINK2, an example of

USB debugger adaptor

Motor

Control algorithm

(Software model)

Embedded Coder

Figure 11: Transfer of control application developed in Simulink to hardware platform

The ability to test the design using PIL configuration allows quicker development. Since the control

algorithm code is generated automatically, it avoids the possibility of human errors in code porting.

3.2 – LabVIEW™
LabVIEW™ is a product from National Instruments™ which is popular in scientific research

organization as it has a rich library of data processing software components. It is a graphical

programming environment which works on personal computers as well as microcontrollers. The

LabVIEW graphical programming language offers all of the features you expect in any programming

language such as looping, conditional execution, and the handling of different data types. The main

difference in working with LabVIEW is that you implement the design of the program in diagrams.

For example, you can represent a simple loop to compute the sum of 1 to 10 by the For Loop shown

in Figure 12

Figure 12 : A simple for loop to add 1 to 10 in LabVIEW programming

The LabVIEW programming environment provides a comprehensive library of functions including

functions for digital signal processing (e.g. filter and spectral analysis) , mathematic, array/matrix

processing, etc. These ready-to-use components allow application software to be developed

without an in-depth knowledge of programming or algorithms. For complex applications, you can

design the software into a hierarchy of modules called virtual instruments (VIs) and subVIs. For

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 12 of 20

example, the figure below show a LabVIEW subVI on the right which find the largest variables from

four input variables, and this subVI is used by another VI.

Figure 13: Hierarchical software design in LabVIEW

The LabVIEW C Code Generator takes LabVIEW graphical code and generates procedural C code. So

you can add the generated code in projects for traditional programming environments such as Keil®

MDK-ARM, IAR Embedded Workbench, etc. During program development, you can first test the

LabVIEW code by running it inside the LabVIEW environment on personal computer.

Create

project

Develop

algorithm

using

graphical

code

Simulate

algorithm

on desktop

PC

Define

function

prototype to

algorithm

Generate C

code

Integrate into

C code

environment

Figure 14: Typical development flow for using LabVIEW C code generator

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 13 of 20

4 - Education and hobbyists

4.1 – Arduino™
Arduino™ (www. arduino.cc) is a popular platform for engineers, hobbyists and education

organizations. It is based on Atmel® AVR® and ARM processor-based microcontrollers and contains

many different hardware platforms. Examples of Arduino include the Arduino Due (based on Atmel

ARM Cortex-M3 processor-based SAM3X8E,), and Arduino Uno (based on Atmel’s AVR ATmega328

microcontroller).

Arduino enthusiasts have recently developed (or thought of developing) a number of designs based

on the Arduino platform including:

 A guitar-hero flame thrower: http://arduino.cc/blog/2012/04/18/arduino-flamethrower-

guitarhero-rockstar/

 A lawn-mowing robot: http://arduino.cc/forum/index.php?topic=2557.0

 Auto lacers (shoe lace that lace by itself), flame-throwing latern and more:

http://www.instructables.com/id/20-Unbelievable-Arduino-Projects/

And, most recently with the launch of the Arduino Due, which is based on the Atmel SAM3X8E board

with an ARM Cortex-M3 processor, we can expect to see a number of other cool, new projects.

Figure 15: Arduino Due

http://arduino.cc/blog/2012/04/18/arduino-flamethrower-guitarhero-rockstar/
http://arduino.cc/blog/2012/04/18/arduino-flamethrower-guitarhero-rockstar/
http://arduino.cc/forum/index.php?topic=2557.0
http://www.instructables.com/id/20-Unbelievable-Arduino-Projects/

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 14 of 20

The Arduino IDE and the boards are designed to be very easy to use, making it suitable for students

and hobbyists to learn embedded programming. In addition, the Java base IDE can be use with

Windows, Linux and MacOS systems.

Figure 16: Arduino IDE can be used on Windows, MacOS and Linux.

Different from traditional source development approaches, Arduino contains a large software library

for various peripheral control functions. These functions are at high level and users do not have to

spend a long time to learn how to program the peripherals. One particular interesting nature of the

Arduino APIs is that most of the APIs are hardware platform independent. So you can use the same

program on different Arduino boards.

An Arduino program is called a sketch and it contains two parts:

void setup() – This is executed in the beginning of the program execution.

void loop() – This is executed repeatedly after setup().

During programming, users insert their own application code into these two functions. During

compilation, the IDE adds an additional software framework for the system and adds the underlying

code for the peripheral API calls. The source code for the APIs are available so it is possible to

customize the code if necessary.

Since the Arduino is open source, developers can prototype a system quickly using Arduino, and

convert their projects to use other development suites if necessary. For example, you might need to

do this when integrating your design with other middleware, or restructure your application code to

optimize for low power. As a result, the Arduino platform is more than just an education tool, as it

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 15 of 20

can be very useful for product prototyping. The Arduino users community is also a strong reason for

using Arduino, as there are plenty of example projects available (users contributions). And if a user

found a problem, there is a very high chance that other experience users can provide assistance.

The Arduino boards are very affordable (starting from about US$25).

4.2 – mbed
The mbed platform is also targeted at education, hobbyists and rapid prototyping market. The mbed

SDK also contains a rich set of peripheral APIs, making it very easy and quick for beginners to create

feature rich applications. Currently the mbed boards features ARM Cortex-M3 (NXP LPC1768),

Cortex-M0 (NXP LPC11U24) and Cortex-M0+ (Freescale™ KL25Z) microcontrollers, and are at an

affordable price range. The mbed board is designed with a 40-pin DIP form factor so that it can be

connected to other development boards easily. It has a mini USB connection at the top.

Figure 17:A mbed board with NXP LPC1768 microcontroller

One unique nature of the mbed development platform is that the development tool is web based

and is accessed via a web browser. So users can use the mbed IDE on any computer (Windows,

Linux, MacOS, etc) and do not have to install any software.

Once you have developed a project and compiled the design successfully, you can download the

binary image to your PC. When the mbed board is plugged in to the USB port, it appears as a USB

mass storage device (like a flash drive) and you can copy the program image to it. Then you can

push a button on the board to reset it, and it will start the program execution.

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 16 of 20

USB
mbed

network

mbed.org Servers

Internet

mbed (java)mbed (java)

#include "mbed.h"

Serial pc(USBTX, USBRX); // tx, rx
PwmOut led(LED1);
int main() {

http://mbed.org

1) Web based program

development

3) Download

compiled

binary image

4) Copy binary

image to mbed

board

5) reset and run

program

2) application compiled on

mbed.org server

Figure 18:Design flow with mbed platform

Starting from mbed SDK 2.0, the mbed platform is open source and you can export the project to

traditional development suite like Keil® Microcontroller Development Kit (MDK-ARM) directly. For

complex designs with multiple application tasks, mbed platform have built-in RTOS support using

CMSIS-RTOS APIs.

5 – Control and FSM designs
In many embedded applications, especially in control applications, you can view the system

operations as a Finite State Machine (FSM). There is a wide range of software development suites

and control applications including FSM designs. Here we only cover a couple of these.

5.1 – IAR VisualSTATE from IAR Systems
The IAR VisualSTATE® product allows you to create Finite State Machine designs from a graphic

design environment. You can define the states available, the events that can cause state transitions

and the corresponding operations for each state.

The VisualSTATE design environment is based on UML (Unified Modeling Language). State

transitions are triggered by “events”. For example, in the following diagram a simple FSM for radio

control unit is defined with 3 states. In the descriptions of each state transition, text on the left of

“/” describes the event(s) which triggers the transition and the text on the right of “/”describes the

action(s) to be taken at the state transition.

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 17 of 20

Figure 19: A simple state machine design in IAR VisualSTATE

VisualSTATE allows you to define internal events (called signals, indicated by “^” prefix) that can be

emitted as part of the action side of a transition. Such signal events are processed before any new

events from the environment. Guard conditions can be specified as part of the trigger definition and

must be true for the transition to fire. The guard conditions are defined using Boolean expressions

which has a C like syntax.

The VisualSTATE allows you to create the state machine and define the state machine operations

easily. After the state machine is designed, VisualSTATE can generate C/C++ codes which can then

be integrated into normal project in IAR Embedded Workbench® for ARM (EWARM).

Create States

Define state

transitions rules

&

action for each state

Run verification

Fix problem

Generate

C/C++ code

Integrate to

C/C++ project

Figure 20: Development flow using IAR Visual State

To help developers, Visual state contains a formal verification tool that can detect potential issues

such as:

- Deadlock (local or system level)

- Unreachable state or state combination

- Conflicting transitions

- Systems with ambiguous behavior

The transition sequence that triggers these errors can be annotated by the tool for debugging.

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 18 of 20

Since the IAR VisualSTATE is tightly coupled with IAR EWARM, it can be debugged with the C Spy

debugger with hardware target system connected. The generated FSM code can also run as a thread

in an RTOS environment.

5.2 – ASD:Suite®, Verum®
For complex safety critical systems with many software components, formal verification of the

system is even more important. Verum® addresses such requirement by providing ASD:Suite®

(Analytical Software Design Suite), a model based design tool with a highly sophisticated formal

verification engine that enables verification of the software system design much earlier in the design

cycle, before coding and system level testing. This enables faster software development, as well as

assuring high software quality and reliability.

In the IDE of ASD:Suite, you can create and manage software components, and defines the

interfaces between different components. You can expand each component and define their

behavioural model using a table based editor called Model Navigator.

Figure 21: ASD:Suite IDE allows you to create software components and define their details behavior

Once the models are created, you can then run the formal verification engine, which can detect

errors such as concurrency issues, dead locks, live locks, unreachable states, illegal behaviors, race

conditions, interface mismatches, unhandled error and incomplete behaviors. It can also create

trace (annotations) of the conditions which triggers the errors. To fully validate the models, you

might need to create model of the external systems which interface with the software components.

Once the models are verified, you can then generate C, C++, C# or even Java code. Since the verified

mode have no undefined or ambiguous behavior, and must be fully consistence due to the formal

verification flow, ASD:Suite can guarantee that the generated code is fully equivalence to the model

defined. By using automatic code generate, human coding errors can be avoided. In addition, a

feature called TinyC generator can generate compact code targeted for embedded systems with

limited memory foot print, although this limit the design to single thread execution.

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 19 of 20

Fixure 22: Model based design approach with formal verification support enable design errors to be

detected early

The generated code can then be integrated into your embedded project. The generated code can

run on various platforms and can integrate with RTOS, as well as on baremetal targets. Also, as the

design is language independent, a single model design can be ported to multiple platforms.

6 – Other programming languages
There is no shortage of alternative programming languages. For example, ARM® Cortex®-M

processor-based microcontrollers can be programmed with:

- ADA (www.adacore.com, see descriptions below)

- eLua (www.eluaproject.net)

- Pascal (www.mikroe.com/mikropascal/arm/)

- Basic (www.mikroe.com/mikrobasic/arm/)

- Python (http://code.google.com/p/python-on-a-chip/)

- Forth (http://www.mpeforth.com/xc7.htm)

For example, the GNAT Pro Safety Critical development tool kit Ada is now available for use on ARM

Cortex-M3 processor-based microcontrollers. There are also additional new programming languages

under development, and possibly a long list of other development languages.

Copyright © 2013 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 20 of 20

7- Conclusions
Modern microcontrollers such as those based on the ARM Cortex-M processors have lead to an

increase of alternate programming environments. In addition to providing:

 Higher processing power,

 Comprehensive processor features and

 Unparalleled energy efficiency and flexible memory system,

These ARM processor-based microcontrollers also enabled:

 Efficient RTOS implementations, and also

 Support of various types of high level programming languages.

Some of these new programming methods are targeted at certain user types or application areas.

For example, Arduino and mbed are focused on hobbyists and students, while Java development

environments could be targeted for Internet of Things (IoT) applications. With the increasing

availability of the ARM Cortex-M processor-based microcontrollers, there is a large market space

which enables development suites and tools to be developed for specific market. The trend also

enables new opportunities for software tools vendors.

Overall, the landscape of the development tools is changing rapidly and embedded software

developers are no longer limited to traditional software development methods.

Acknowledgements
Large number of people had helped us in creating this paper: Robin Smith from Oracle, Regis

Latawiec from IS2T, Bob Daverveld from Verum, Tom Erkkinen from Mathworks, Agnes Toan from

Atmel, Anders Holmberg from IAR Systems.

