

Jim Blandy

Why Rust?

978-1-491-92730-4

[LSI]

Why Rust?
by Jim Blandy

Copyright © 2015 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editors: Meghan Blanchette and Rachel
Roumeliotis
Production Editor: Melanie Yarbrough
Copyeditor: Charles Roumeliotis

Proofreader: Melanie Yarbrough
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

September 2015: First Edition

Revision History for the First Edition
2015-09-02: First Release
2015-09-014: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491927304 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Why Rust?, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491927304

Table of Contents

Why Rust?. 1
Type Safety 2
Reading Rust 6
Memory Safety in Rust 18
Multithreaded Programming 42

vii

Why Rust?

Systems programming languages have come a long way in the 50
years since we started using high-level languages to write operating
systems, but two thorny problems in particular have proven difficult
to crack:

• It’s difficult to write secure code. It’s common for security
exploits to leverage bugs in the way C and C++ programs han‐
dle memory, and it has been so at least since the Morris virus,
the first Internet virus to be carefully analyzed, took advantage
of a buffer overflow bug to propagate itself from one machine to
the next in 1988.

• It’s very difficult to write multithreaded code, which is the only
way to exploit the abilities of modern machines. Each new gen‐
eration of hardware brings us, instead of faster processors, more
of them; now even midrange mobile devices have multiple
cores. Taking advantage of this entails writing multithreaded
code, but even experienced programmers approach that task
with caution: concurrency introduces broad new classes of bugs,
and can make ordinary bugs much harder to reproduce.

These are the problems Rust was made to address.

Rust is a new systems programming language designed by Mozilla.
Like C and C++, Rust gives the developer fine control over the use
of memory, and maintains a close relationship between the primi‐
tive operations of the language and those of the machines it runs on,
helping developers anticipate their code’s costs. Rust shares the
ambitions Bjarne Stroustrup articulates for C++ in his paper
“Abstraction and the C++ machine model”:

1

In general, C++ implementations obey the zero-overhead principle:
What you don’t use, you don’t pay for. And further: What you do
use, you couldn’t hand code any better.

To these Rust adds its own goals of memory safety and data-race-
free concurrency.

The key to meeting all these promises is Rust’s novel system of own‐
ership, moves, and borrows, checked at compile time and carefully
designed to complement Rust’s flexible static type system. The own‐
ership system establishes a clear lifetime for each value, making
garbage collection unnecessary in the core language, and enabling
sound but flexible interfaces for managing other sorts of resources
like sockets and file handles.

These same ownership rules also form the foundation of Rust’s
trustworthy concurrency model. Most languages leave the relation‐
ship between a mutex and the data it’s meant to protect to the com‐
ments; Rust can actually check at compile time that your code locks
the mutex while it accesses the data. Most languages admonish you
to be sure not to use a data structure yourself after you’ve sent it via
a channel to another thread; Rust checks that you don’t. Rust is able
to prevent data races at compile time.

Mozilla and Samsung have been collaborating on an experimental
new web browser engine named Servo, written in Rust. Servo’s
needs and Rust’s goals are well matched: as programs whose primary
use is handling untrusted data, browsers must be secure; and as the
Web is the primary interactive medium of the modern Net, browsers
must perform well. Servo takes advantage of Rust’s sound concur‐
rency support to exploit as much parallelism as its developers can
find, without compromising its stability. As of this writing, Servo is
roughly 100,000 lines of code, and Rust has adapted over time to
meet the demands of development at this scale.

Type Safety
But what do we mean by “type safety”? Safety sounds good, but what
exactly are we being kept safe from?

Here’s the definition of “undefined behavior” from the 1999 stan‐
dard for the C programming language, known as “C99”:

3.4.3
undefined behavior

2 | Why Rust?

behavior, upon use of a nonportable or erroneous program con‐
struct or of erroneous data, for which this International Standard
imposes no requirements

Consider the following C program:

int main(int argc, char **argv) {
 unsigned long a[1];
 a[3] = 0x7ffff7b36cebUL;
 return 0;
}

According to C99, because this program accesses an element off the
end of the array a, its behavior is undefined, meaning that it can do
anything whatsoever. On my computer, this morning, running this
program produced the output:

undef: Error: .netrc file is readable by others.
undef: Remove password or make file unreadable by others.

Then it crashes. I don’t even have a .netrc file.

The machine code the C compiler generated for my main function
happens to place the array a on the stack three words before the
return address, so storing 0x7ffff7b36cebUL in a[3] changes poor
main’s return address to point into the midst of code in the C stan‐
dard library that consults one’s .netrc file for a password. When my
main returns, execution resumes not in main’s caller, but at the
machine code for these lines from the library:

warnx(_("Error: .netrc file is readable by others."));
warnx(_("Remove password or make file unreadable by others."));
 goto bad;

In allowing an array reference to affect the behavior of a subsequent
return statement, my C compiler is fully standards-compliant. An
“undefined” operation doesn’t just produce an unspecified result: it
is allowed to cause the program to do anything at all.

The C99 standard grants the compiler this carte blanche to allow it
to generate faster code. Rather than making the compiler responsi‐
ble for detecting and handling odd behavior like running off the end
of an array, the standard makes the C programmer responsible for
ensuring those conditions never arise in the first place.

Empirically speaking, we’re not very good at that. The 1988 Morris
virus had various ways to break into new machines, one of which
entailed tricking a server into executing an elaboration on the tech‐

Type Safety | 3

nique shown above; the “undefined behavior” produced in that case
was to download and run a copy of the virus. (Undefined behavior is
often sufficiently predictable in practice to build effective security
exploits from.) The same class of exploit remains in widespread use
today. While a student at the University of Utah, researcher Peng Li
modified C and C++ compilers to make the programs they trans‐
lated report when they executed certain forms of undefined behav‐
ior. He found that nearly all programs do, including those from
well-respected projects that hold their code to high standards.

In light of that example, let’s define some terms. If a program has
been written so that no possible execution can exhibit undefined
behavior, we say that program is well defined. If a language’s type
system ensures that every program is well defined, we say that lan‐
guage is type safe.

C and C++ are not type safe: the program shown above has no type
errors, yet exhibits undefined behavior. By contrast, Python is type
safe. Python is willing to spend processor time to detect and handle
out-of-range array indices in a friendlier fashion than C:

>>> a = [0]
>>> a[3] = 0x7ffff7b36ceb
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list assignment index out of range
>>>

Python raised an exception, which is not undefined behavior: the
Python documentation specifies that the assignment to a[3] should
raise an IndexError exception, as we saw. As a type-safe language,
Python assigns a meaning to every operation, even if that meaning is
just to raise an exception. Java, JavaScript, Ruby, and Haskell are also
type safe: every program those languages will accept at all is well
defined.

Note that being type safe is mostly independent of
whether a language checks types at compile time or at
run time: C checks at compile time, and is not type
safe; Python checks at runtime, and is type safe. Any
practical type-safe language must do at least some
checks (array bounds checks, for example) at runtime.

4 | Why Rust?

It is ironic that the dominant systems programming languages, C
and C++, are not type safe, while most other popular languages are.
Given that C and C++ are meant to be used to implement the foun‐
dations of a system, entrusted with implementing security bound‐
aries and placed in contact with untrusted data, type safety would
seem like an especially valuable quality for them to have.

This is the decades-old tension Rust aims to resolve: it is both type
safe and a systems programming language. Rust is designed for
implementing those fundamental system layers that require perfor‐
mance and fine-grained control over resources, yet still guarantees
the basic level of predictability that type safety provides. We’ll look
at how Rust manages this unification in more detail in later parts of
this report.

Type safety might seem like a modest promise, but it starts to look
like a surprisingly good deal when we consider its consequences for
multithreaded programming. Concurrency is notoriously difficult to
use correctly in C and C++; developers usually turn to concurrency
only when single-threaded code has proven unable to achieve the
performance they need. But Rust’s particular form of type safety
guarantees that concurrent code is free of data races, catching any
misuse of mutexes or other synchronization primitives at compile
time, and permitting a much less adversarial stance towards exploit‐
ing parallelism. We’ll discuss this more in the final section of the
report.

Type Safety | 5

Rust does provide for unsafe code, functions or lexical
blocks that the programmer has marked with the
unsafe keyword, within which some of Rust’s type
rules are relaxed. In an unsafe block, you can use unre‐
stricted pointers, treat blocks of raw memory as if they
contained any type you like, call any C function you
want, use inline assembly language, and so on.
Whereas in ordinary Rust code the compiler guaran‐
tees your program is well defined, in unsafe blocks it
becomes the programmer’s responsibility to avoid
undefined behavior, as in C and C++. As long as the
programmer succeeds at this, unsafe blocks don’t affect
the safety of the rest of the program. Rust’s standard
library uses unsafe blocks to implement features that
are themselves safe to use, but which the compiler isn’t
able to recognize as such on its own.
The great majority of programs do not require unsafe
code, and Rust programmers generally avoid it, since it
must be reviewed with special care. The rest of this
report covers only the safe portion of the language.

Reading Rust
Before we get into the details of Rust’s semantics, let’s take a look at
Rust’s syntax and types. For the most part, Rust tries to avoid origi‐
nality; much will be familiar, so we’ll focus on what’s unusual. The
types are worth some close attention, since they’re the key not only
to Rust’s performance and safety, but also to making the language
palatable and expressive.

Here’s a function that returns the greatest common divisor of two
numbers:

fn gcd(mut n: u64, mut m: u64) -> u64 {
 assert!(n != 0 && m != 0);
 while m != 0 {
 if m < n {
 let t = m; m = n; n = t;
 }
 m = m % n;
 }
 n
}

6 | Why Rust?

If you have experience with C, C++, Java, or JavaScript, you’ll proba‐
bly be able to fake your way through most of this. The interesting
parts in brief:

• The fn keyword introduces a function definition. The -> token
after the argument list indicates the return type.

• Variables are immutable by default in Rust; the mut keyword
marks our parameters n and m as mutable, so we can assign to
them.

• In a variable or parameter declaration, the name being declared
isn’t nestled inside the syntax of the type, as it would be in C and
C++. A Rust declaration has a name followed by a type, with a
colon as a separator.

• A u64 value is an unsigned 64-bit integer; i32 is the type of 32-
bit signed integers; and f32 and f64 are the usual floating-point
types. Rust also has isize and usize types, which are 32-bit
integers on 32-bit machines and 64-bit integers on 64-bit
machines, in signed and unsigned varieties.

• The ! in the use of assert! marks that as a macro invocation,
rather than a function call. Rust has a flexible macro system that
is carefully integrated into the language’s grammar. (Unfortu‐
nately, we don’t have space to do more than mention it in this
report.)

• The type of a numeric literal like 0 is inferred from context; in
our gcd function, those are u64 zeros. You can specify a literal’s
type by providing a suffix: 1729i16 is a signed 16-bit integer. If
neither inference nor suffix determines a literal’s type, Rust
assigns it the type i32.

• The let keyword introduces local variables. Rust infers types
within functions, so there’s no need for us to state a type for our
temporary variable t: Rust infers that it must be u64.

• The conditions of if and while expressions need no parenthe‐
sis, but curly brackets are required around the expressions they
control.

• Rust has a return statement, but we didn’t need one to return
our value here. In Rust, a block surrounded by curly braces can
be an expression; its value is that of the last expression it con‐
tains. The body of our function is such a block, and its last

Reading Rust | 7

expression is n, so that’s our return value. Likewise, if is an
expression whose value is that of the branch that was taken.
Rust has no need for a separate ?: conditional operator as in C;
one just writes the if-else structure right into the expression.

There’s much more, but hopefully this covers enough of the syntax
to get you oriented. Now let’s look at a few of the more interesting
aspects of Rust’s type system: generics, enumerations, and traits.

Generics
It is very common for functions in Rust to be generic—that is, to
operate on an open-ended range of argument types, rather than just
a fixed selection, much as a function template does in C++. For
example, here is the std::cmp::min function from Rust’s standard
library, which returns the lesser of its two arguments. It can operate
on integers of any size, strings, or really any type in which one value
can be said to be less than another:

fn min<T: Ord>(a: T, b: T) -> T {
 if a <= b { a } else { b }
}

Here, the text <T: Ord> after the function’s name marks it as a
generic function: we’re defining it not just for one specific type, but
for any type T, which we’ll use as the type of our arguments and
return value. By writing T : Ord, we’ve said that not just any type
will do: T must be a type that is Ord, meaning that it supports a com‐
parison ordering all values of that type. If a type is Ord, we can use
the <= operator on its values. Ord is an example of a trait, which we’ll
cover in detail below.

With this definition, we can apply min to values of any type we want,
as long as the type orders its values:

min(10i8, 20) == 10; // T is i8
min(10, 20u32) == 10; // T is u32
min("abc", "xyz") == "abc"; // strings are Ord, so this works

Since the definition uses T for both arguments, calls to min must
pass two values of the same type:

min(10i32, "xyz"); // error: mismatched types.

The C++ analogue of our min function would be:

8 | Why Rust?

template<typename T>
T min(T a, T b) {
 return a <= b ? a : b;
}

However, the analogy isn’t exact: where the Rust min stipulates that
its argument type T must be Ord, the C++ function template says
nothing about its requirements for T. In C++, for each call to min,
the compiler must take the specific argument type at hand, substi‐
tute it for T in min’s definition, and see if the result is meaningful.
Rust can check min’s definition in its own right, once, and can check
a call to min using only the function’s stated type: if the arguments
have the same type, and that type is Ord, the call is well typed. This
allows Rust to produce error messages that locate problems more
precisely than those you can expect from a C++ compiler. Rust’s
design also forces programmers to state their requirements up front,
which has its benefits and drawbacks.

One can have generic types as well as functions:

struct Range<Idx> {
 start: Idx,
 end: Idx,
}

This is the std::ops::Range type from Rust’s standard library,
which represents the value of range expressions like 0..10; these
appear in iterations, expressions denoting portions of arrays and
strings, and so on. As in the definition of our generic function min,
the text <Idx> after the name Range indicates that we’re defining a
structure that is generic in one type, Idx, which we use as the type of
the structure’s start and end fields.

Making Range generic allows us to handle all these expressions as
Range<T> values for different types T:

-10i32..10 // a Range<i32>
-2.0..0.25f64 // a Range<f64>
200..800 // a Range<T>, for the integer type T
 // determined from context

Rust has a more general expression syntax for writing instances of
any struct type. For example, the last range above could also be writ‐
ten:

Range { start: 200, end: 800 }

Reading Rust | 9

Rust compiles generic functions by producing a copy of their code
specialized for the exact types they’re applied to, much as C++ gen‐
erates specialized code for function template instantiations. As a
result, generic functions are as performant as the same code written
with specific types used in place of the type variables: the compiler
can inline method calls, take advantage of other aspects of the type,
and perform other optimizations that depend on the types.

Enumerations
Rust’s enumerated types are a departure from C and C++ enum types,
but users of functional languages will recognize them as algebraic
datatypes. A Rust enumerated type allows each variant to carry a dis‐
tinct set of data values along with it. For example, the standard
library provides an Option type, defined as follows:

enum Option<T> {
 None,
 Some(T)
}

This says that, for any type T, an Option<T> value may be either of
two variants: None, which carries no value; or Some(v), which carries
the value v of type T. Enumerated types resemble unions in C and
C++, but a Rust enum remembers which alternative is live, prevent‐
ing you from writing to one variant of the enum and then reading
another. C and C++ programmers usually accomplish the same pur‐
pose by pairing a union type with an enum type, calling the combina‐
tion a “tagged union.”

Since Option is a generic type, you can use it with any value type
you want. For example, here’s a function that returns the quotient of
two numbers, but declines to divide by zero:

fn safe_div(n: i32, d: i32) -> Option<i32> {
 if d == 0 {
 return None;
 }
 return Some(n / d);
}

This function takes two arguments n and d, both of type i32, and
returns an Option<i32>, which is either None or Some(q) for some
signed 32-bit integer q. If the divisor is zero, safe_div returns None;
otherwise it does the division and returns Some(the quotient).

10 | Why Rust?

The only way to retrieve a value carried by an enumerated type is to
check which variant it is, and handle each case, using a match state‐
ment. For example, we can call safe_div like this:

match safe_div(num, denom) {
 None => println!("No quotient."),
 Some(v) => println!("quotient is {}", v)
}

You can read the match here as something like a switch statement
that checks which variant of Option<T> safe_div returned. The
Some branch assigns the value the variant carries to the variable v,
which is local to its branch of the match statement. (The None var‐
iant carries no values, so it doesn’t set any local variables.)

In some cases a full-blown match statement is more than we need, so
Rust offers several alternatives with varying ergonomics. The if let
and while let statements use matching as the condition for
branching or looping; and the Option type itself provides several
convenience methods, which use match statements under the hood.

Rust’s standard libraries make frequent use of enumerations, to great
effect; we’ll see two more real-world examples later in the section on
memory safety.

Traits
When we defined our generic min function above, we didn’t simply
define min<T>(a: T, b: T) -> T. One could read that as “the lesser
of two values of any type T,” but not every type is well-ordered. It’s
not meaningful to ask, say, which of two network sockets is the
lesser. Instead we defined min<T: Ord>(...), indicating that min
only works on types whose values fall in some order relative to each
other. Here, the constraint Ord is a trait: a collection of functionality
that a type can implement.

The Ord trait itself is pretty involved, so let’s look at a simpler (but
quite useful) example: the standard library’s IntoIterator and
Iterator traits. Suppose we have a table of the names of the seasons
in the United States’ Pacific Northwest:

let seasons = vec!["Spring", "Summer", "Bleakness"];

Reading Rust | 11

This declares seasons to be a value of type Vec<&str>, a vector of
references to statically allocated strings. Here’s a loop that prints the
contents of seasons:

for elt in seasons {
 println!("{}", elt);
}

Perhaps obviously, this prints:

Spring
Summer
Bleakness

Rust’s for loop isn’t limited to vectors: it can iterate over any type
that meets a few key requirements. Rust captures those requirements
as two traits:

• Types implementing the Iterator trait can produce a sequence
of values for a for loop to iterate over, and decide when to exit
the loop. Iterator values hold the loop state.

• Types implementing the IntoIterator trait have an into_iter
method that returns an Iterator traversing them in whatever
way is natural. To be permitted as the E in for V in E { ... },
a type must implement IntoIterator.

The standard library’s container types like Vec, HashMap, and
LinkedList all implement IntoIterator out of the box. But as an
example, let’s look at what it would take to implement iteration for
our Vec<&str> type ourselves.

Here’s the definition of the Iterator trait from the standard library:

trait Iterator {
 type Item;
 fn next(&mut self) -> Option<Self::Item>;

 fn size_hint(&self) -> (usize, Option<usize>) { ... }
 fn count(self) -> usize { ... }
 fn last(self) -> Option<Self::Item> { ... }
 fn nth(&mut self, n: usize) -> Option<Self::Item> { ... }
 // ... some thirty-odd other methods omitted ...
}

There’s a lot there, but only the first two items actually concern us.
This definition says that, in order to implement this trait, a type
must provide at least two things:

12 | Why Rust?

• Its Item type: the type of value the iteration produces. When
iterating over a vector, this would be the type of the vector’s ele‐
ments.

• A next method, which returns Option<Item>: either Some(v),
where v is the next value in the iteration, or None if we should
exit the loop.

When defining methods, the self argument is special: it refers to
the value on which we’re invoking the method, like this in C++.
The Iterator trait’s next method takes a &mut self argument,
meaning that it takes its self value by reference, and is allowed to
modify it. A method can also take its self value by shared reference
(&self), which does not permit modification, or by value (simply
self).

Other than next, all the methods in Iterator have default defini‐
tions (shown as { ... } above, omitting their code) which build on
the Item and next definitions we provide, so we don’t need to write
them ourselves (although we could if we liked).

To implement Iterator for our vector of strings, we must first
define a type to represent the current loop state: the vector we’re
iterating over, and the index of the element whose value we should
produce in the next iteration:

struct StrVecIter {
 v: Vec<&'static str>,
 i: usize
}

The type &'static str is a reference to a string literal, like the
names of the seasons in our example. (We’ll cover lifetimes like
'static in more detail later, but for now, take it to mean that our
vectors hold only string literals, not dynamically allocated strings.)

Now that we have the StrVecIter type to hold our loop state, we
can implement the Iterator trait for it:

impl Iterator for StrVecIter {

 type Item = &'static str;

 fn next(&mut self) -> Option<&'static str> {
 if self.i >= self.v.len() {
 return None;

Reading Rust | 13

 }
 self.i += 1;
 return Some(self.v[self.i - 1]);
 }
}

We’ve provided an Item type: each iteration gets another &'static
str value from the vector. And we’ve provided a next method,
which produces either Some(s), where s is the value for the next
iteration, or None, indicating that we should exit the loop. This is all
we need: all the other methods appearing in the Iterator trait defi‐
nition will fall back to their default definitions.

With that in place, we can implement the IntoIterator trait. Here’s
the trait’s definition, from the standard library:

trait IntoIterator {
 type Item;
 type IntoIter: Iterator<Item=Self::Item>;
 fn into_iter(self) -> Self::IntoIter;
}

This says that any type implementing IntoIterator must provide:

• A type Item, the type of the values produced for each iteration
of the loop.

• A type IntoIter, which holds the loop state. This must imple‐
ment Iterator, with the same Item type as our own.

• A method into_iter, which produces a value of our IntoIter
type.

Here’s how we could implement IntoIterator for our type
Vec<&str>:

impl IntoIterator for Vec<&'static str> {
 type Item = &'static str;
 type IntoIter = StrVecIter;
 fn into_iter(self) -> StrVecIter {
 return StrVecIter { v: self, i: 0 };
 }
}

This defines the into_iter method for Vec<&str> to construct a
value of the StrVecIter type we defined above, pointing to our vec‐
tor and ready to start iteration at the first element; accordingly,
StrVecIter is our IntoIter type. And finally, our Item type is &str:
each iteration of the loop gets a string.

14 | Why Rust?

We could improve on this definition by passing it the vector by ref‐
erence, not by value; as written, the for loop will move the vector
into the StrVecIter value, meaning that it can no longer be used
after we’ve iterated over it. We can fix this readily by having
StrVecIter borrow the vector instead of taking it by value; we’ll
cover borrowed references later in the report.

Like functions and types, trait implementations can be generic.
Rust’s standard library uses a single implementation of
IntoIterator to handle vectors of any type:

impl<T> IntoIterator for Vec<T> {
 type Item = T;
 type IntoIter = IntoIter<T>;
 fn into_iter(self) -> IntoIter<T> {
 ...
 }
}

Iterators are a great example of Rust’s commitment to zero-cost
abstractions. While Rust’s for loop requires the type representing
the loop state to implement the Iterator trait, this doesn’t imply
that any sort of virtual dispatch is taking place each time the for
loop invokes the iterator’s next method. As long as the compiler
knows the exact type of the iterator value, it can inline the type’s
next method, and we’ll get the same machine code we’d expect from
a handwritten loop.

Implementing Iterator does more than just allow us to connect to
for loops. The default method definitions on Iterator offer a nice
collection of operations on sequences of values. For example, since
ranges implement IntoIterator, here’s a function that sums the
integers in the range 1..n using Iterator’s fold method:

fn triangle(n: i32) -> i32 {
 (0..n+1).fold(0, |sum, i| sum + i)
}

Here, the expression |sum, i| sum + i is a Rust closure: an anony‐
mous function that takes two arguments, sum and i, and returns sum
+ i. We pass this closure as fold’s second argument; fold calls it for
each value the iterator produces, passing the running total and the
iterator’s value as arguments. The closure’s return value is taken as
the new running total, which fold returns when the iteration is
complete.

Reading Rust | 15

As with the for loop, this is a zero-cost abstraction: the fold
method can be inlined into triangle, and the closure can be inlined
into fold. The machine code generated for this definition is as good
as that for the same loop written out by hand.

Traits usually appear in Rust code as bounds on type parameters,
just as the trait Ord bounded the type variable T in our definition of
min earlier. Since Rust compiles generic functions by specializing
them to the actual types they’re being applied to, the compiler
always knows exactly which implementation of the bounding traits
to use. It can inline method definitions, and in general optimize the
code for the types at hand.

However, you can also use traits to refer to values whose specific
type isn’t determined until runtime. Here, Rust must use dynamic
dispatch to find the traits’ implementations, retrieving the relevant
method definition from a table at runtime, much as C++ does when
calling a virtual member function.

For example, the following function reads four bytes from an input
stream stream, and compares them against a given sequence of
bytes. One might use a function like this to check the “magic num‐
ber” bytes at the beginning of a binary file:

use std::io::Read;
use std::io::Result;

fn check_magic(stream: &mut Read, magic: &[u8])
 -> Result<bool> {
 let mut buffer = [0; 4];
 if try!(stream.read(&mut buffer)) < 4 {
 return Ok(false);
 }
 return Ok(&buffer == magic);
}

The standard library defines std::io::Read as a trait with methods
for reading from a stream of bytes, akin to std::istream in C++.
This trait’s read method accepts a buffer, tries to fill it with bytes
from the stream, and returns the number of bytes it transferred on
success, or an error code on failure.

Our stream argument’s type, &mut Read, is interesting: rather than
being a mutable reference to some specific type, it is a mutable refer‐
ence to a value of any type that implements Read. This sort of refer‐
ence is called a trait object, and supports all the trait’s methods and

16 | Why Rust?

operations. This allows us to use a reference to any value that imple‐
ments Read as the first argument to check_magic.

At runtime, Rust represents a trait object as a pair of
pointers: one to the value itself, and the other to a table
of implementations of the trait’s methods for that val‐
ue’s type. Our call to stream.read consults this table to
find the read implementation for stream’s true type,
and calls that, passing along the trait object’s pointer to
the value as the self argument.

Trait objects allow data structures to hold values of mixed types,
where the set of possible types is open-ended. For example, the fol‐
lowing function takes a vector of values, and joins them all into a
string, knowing nothing about their types other than that they
implement the trait ToString:

fn join(v: &Vec<&ToString>, sep: char) -> String {
 let mut s = String::new();
 for i in 0..v.len() {
 s.push_str(&v[i].to_string());
 if i + 1 < v.len() {
 s.push(sep);
 }
 }
 s
}

We can pass this a vector containing an arbitrary mix of types:

assert_eq!(join(&vec![&0,
 &std::net::Ipv4Addr::new(192,168,0,1),
 &"trilobite"],
 ','),
 "0,192.168.0.1,trilobite");

When used in this way, traits are analogous to C++’s abstract base
classes or Java’s interfaces: they use dynamic dispatch to allow code
to operate on values whose types can vary at runtime. But the anal‐
ogy doesn’t extend much further:

• When traits serve as bounds on type parameters to generic
functions, there’s no dynamic dispatch involved. This is the
most common use of traits in Rust.

• Whereas a type’s base classes and interfaces are fixed when it is
defined, the set of traits a type implements is not. You can

Reading Rust | 17

define your own traits and implement them on types defined
elsewhere; you can even implement your traits on primitive
types like i32.

Memory Safety in Rust
Now that we’ve sketched Rust’s syntax and types, we’re ready to look
at the heart of the language, the foundation for Rust’s claims to
memory safety and trustworthy concurrency. We’ll focus on three
key promises Rust makes about every program that passes its
compile-time checks:

• No null pointer dereferences. Your program will not crash
because you tried to dereference a null pointer.

• No dangling pointers. Every value will live as long as it must.
Your program will never use a heap-allocated value after it has
been freed.

• No buffer overruns. Your program will never access elements
beyond the end or before the start of an array.

Rust uses a different technique to back up each of these promises,
and each technique has its own impact on the way you write pro‐
grams. Let’s take a look at each one in turn.

No Null Pointer Dereferences
The simplest way to ensure that one never dereferences a null
pointer is to never permit one to be created in the first place; this is
the approach Rust takes. There is no equivalent in Rust to Java’s
null, C++’s nullptr, or C’s NULL. Rust does not convert integers to
pointers, so one can’t just use 0, as in C++. The default value of a
pointer is irrelevant: Rust requires you to initialize each variable
before using it. And so on: the language simply doesn’t provide a
way to introduce null pointers.

But all those other languages include explicit support for null point‐
ers for a good reason: they’re extremely useful. A lookup function
can return a null pointer to indicate that the requested value was not
found. A null pointer can indicate the absence of optional informa‐
tion. Functions that always return a pointer to an object under nor‐
mal circumstances can return null to indicate failure.

18 | Why Rust?

The problem with null pointers is that it’s easy to forget to check for
them. And since null pointers are often used to signal rare condi‐
tions like running out of memory, missing checks can go unnoticed
for a long time, leaving us with the worst possible combination:
checks that are easy to forget, used in a way that makes the omission
usually asymptomatic. If we could ensure that our programs never
neglect to check for null pointers, then we could have our optional
values and our error results, without the crashes.

Rust’s solution is to separate the concept of a pointer (a kind of value
that refers to some other value in memory) from the concept of an
optional value, handling the latter using the standard library’s
Option enumerated type, presented earlier. When we need an
optional argument, return value, or so on of some pointer type P, we
use Option<P>. A value of this type is not a pointer; trying to deref‐
erence it or call methods on it is a type error. Only if we check which
variant we have in hand using a match statement and find Some(p)
can we extract the actual pointer p—which is now guaranteed not to
be null, simply because pointers are never null.

The punchline is that, under the hood, this all turns back into null
pointers in the compiled code. The Rust language permits the com‐
piler to choose any representation it likes for enum types like Option.
In the case of Option<P>, the compiler chooses to represent None as
a zero value, and Some(p) as the pointer value p, since the one can’t
be mistaken for the other. Thus, after the compiler has ensured that
all the necessary checks are present in the source code, it translates it
to the same representation at the machine level that C++ would use
for nullable pointers.

For example, here’s a definition of a singly linked list whose nodes
carry a value of some type T:

Memory Safety in Rust | 19

struct Node<T> {
 value: T,
 next: Option<Box<Node<T>>>
}

type List<T> = Option<Box<Node<T>>>;

The Box type is Rust’s simplest form of heap allocation: a Box<T> is
an owning pointer to a heap-allocated value of type T. When the box
is dropped, the value in the heap it refers to is freed along with it. So
Option<Box<Node<T>>> is either None, indicating the end of the list,
or Some(b) where b is a box pointing to the next node.

Once we’ve disentangled the concept of a pointer from the concept
of an optional value, we begin to notice other common situations in
C and C++ interfaces where special sentinel values that mark errors
or other corner conditions might be mistaken for legitimate values.
For example, many POSIX system calls return -1 to indicate that an
error occurred, and return nonnegative integers on success. One
might discover C code like this:

ssize_t bytes_read = read(fd, buffer, sizeof(buffer));
process_bytes(buffer, bytes_read);

If the two arguments to process_bytes are the address of a buffer
and the length of the data it holds in bytes, then we have a bug here:
the read system call returns -1 when an error occurs, and the pro‐
grammer forgot to check for that case. This code will blithley pass
the -1 along to process_bytes as a nonsensical length. Just as a null
pointer is a legitimate pointer value in C, our error marker -1 is a
legitimate integer value, so nothing in the language requires the pro‐
grammer to check the result from read before treating it as a buffer
length.

In the Rust standard library, functions that can fail, such as those
that do input or output, return a value of the following type,
declared in the std::result module:

#[must_use]
enum Result<T, E> {
 Ok(T),
 Err(E),
}

This definition looks very similar to Option, but here we have two
type parameters: T, representing whatever sort of value the opera‐

20 | Why Rust?

tion returns on success; and E, representing an error type. The
std::io module defines the following type alias for its own use:

type Result<T> = std::result::Result<T, Error>;

where Error is std::io::Error, the module’s own error type. Thus,
a std::io::Result<T> value carries either a successful result value
of type T, or a std::io::Error error code.

Here, then, is the signature of the Rust library method for reading
bytes from a stream, our analogue to the POSIX read system call:

fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize>;

Here the self argument is the stream we’re reading bytes from, and
buf is a slice of some writable byte array, carrying its start address
and size in a single parameter. But what we’re interested in is the
type of the return value: std::io::Result<usize>, meaning that we
either get a value Ok(size), indicating that we successfully read
size bytes, or a value Err(error), indicating that an error occurred,
as described by the std::io::Error value error.

As with Option, there is no way to retrieve the byte count that read
may have returned without first checking that we indeed have an Ok
result, rather than an Err. The read method’s return type is distinct
from its successful completion type, forcing the developer to check
for errors.

All fallible operations in Rust’s std::io library use
std::io::Result in this manner. And as with Option, Rust pro‐
vides more ergonomic ways to handle Result values than a match
statement. If one must call a function that returns a Result from
within a function that itself returns Result, the try! macro is very
convenient:

// Print the contents of the directory `dir`, and return
// the number of entries or a std::io::Error.
fn list_directory(dir: &Path) -> std::io::Result<usize> {
 let mut count = 0;
 let entries = try!(std::fs::read_dir(dir));

 for entry_or_error in entries {
 let entry = try!(entry_or_error);
 println!("{:?}", entry.path());
 count += 1;
 }

Memory Safety in Rust | 21

 return Ok(count);
}

Here, the call to std::fs::read_dir may fail (for example, if the
directory doesn’t exist), so we use the try! macro to check its result.
If it returns some Err(e), then try! returns immediately from our
list_directory function, providing that Err as the value. Other‐
wise, the result must be Ok(v), and v becomes the value of the try!
expression—in our case, an iterator over the directory’s entries.

Since errors may also occur in the process of reading individual
entries, the iterator yields not DirEntry values (the type of a direc‐
tory entry), but std::io::Result<DirEntry> values. We check each
result in the loop with a second try! expression, and print and
count the result if all is well.

You may have noticed the #[must_use] annotation on the definition
of std::result::Result; that directs the compiler to produce a
warning if a program leaves a return value of this type unused.
Although it is easy enough to subvert, the warning does help catch
error checks that have been accidentally omitted when calling func‐
tions that return no interesting value.

No Dangling Pointers
Rust programs never try to access a heap-allocated value after it has
been freed. This is not an unusual promise; any practical type-safe
language must ensure this. What is unusual is that Rust does so
without resorting to garbage collection or reference counting.

The Rust design FAQ explains:
A language that requires a garbage collector is a language that opts
into a larger, more complex runtime than Rust cares for. Rust is
usable on bare metal with no extra runtime. Additionally, garbage
collection is frequently a source of non-deterministic behavior.

Instead of garbage collection, Rust has three rules that specify when
each value is freed, and ensure all pointers to it are gone by that
point. Rust enforces these rules entirely at compile time; at runtime,
your program uses plain old pointers—dumb addresses in memory
—just like pointers and references in C and C++, or references in
Java.

The three rules are as follows:

22 | Why Rust?

• Rule 1: Every value has a single owner at any given time. You can
move a value from one owner to another, but when a value’s
owner goes away, the value is freed along with it.

• Rule 2: You can borrow a reference to a value, so long as the refer‐
ence doesn’t outlive the value (or equivalently, its owner). Bor‐
rowed references are temporary pointers; they allow you to
operate on values you don’t own.

• Rule 3: You can only modify a value when you have exclusive
access to it.

We’ll look at each of these in turn, and explore their consequences.

Rule 1: Every value has a single owner at any given time. Variables
own their values, as do fields of structures and enums, and elements
of arrays and tuples. Every heap-allocated value has a single pointer
that owns it; when its owning pointer is dropped, the value is drop‐
ped along with it. Values can be moved from one owner to another,
with the source relinquishing ownership to the destination.

As an example, Rust’s String type is a growable array of Unicode
characters (encoded using UTF-8). A String stores its text on the
heap; it is the owner of that heap-allocated memory. So suppose we
create a String value by copying a statically allocated string literal,
and store that in a variable:

{
 let s = "Chez Rutabaga".to_string();
} // s goes out of scope here; text is freed

Here, s owns the String, and the String owns a heap-allocated
buffer holding the text "Chez Rutabaga". When s goes out of scope,
the String will be dropped, and its heap-allocated buffer will be
dropped along with it.

Suppose we add some code:

{
 let s = "Chez Rutabaga".to_string();
 let t1 = s;
 let t2 = s;
}

What should this do?

If this were C++ code using std::string, each assignment would
create a fresh copy of the string. This is simple: each of the resulting

Memory Safety in Rust | 23

three strings is entirely independent of the others. But what if the
string were large? A simple assignment could do unbounded
amounts of work, and allocate unbounded amounts of memory. A
systems language should make costs apparent; in the end, the Rust
designers felt that implicit copying wasn’t the right approach.

If this were Python or Java code, those languages handle their
strings by reference, so this would result in all three variables, s, t1,
and t2, pointing to the same string object. This approach makes the
assignments efficient, because we only copy pointers, and no new
allocation is necessary. But now, how do we decide when to free this
shared string? We either need reference counting or garbage collec‐
tion, neither of which make sense for a primitive type in a systems
programming language. (C++ used to permit reference-counted
string implementations, but the 2011 version of the C++ spec for‐
bids them.)

Midway between those two strategies would be to copy only the
String structure itself byte-for-byte. But this would result in three
String values all pointing to the same buffer holding the text, leav‐
ing us in a situation similar to the Python/Java case. It’s not clear
who owns the buffer, nor how to manage its lifetime without com‐
plex machinery.

Rust approaches this situation starting with an observation from the
C++ community about what a programmer really intends when she
writes an assignment. Sometimes she really needs a copy. But often,
the source of the assigment isn’t going to be used anymore anyway,
so moving the value, leaving the source unusable, is good enough. So
in Rust, for most types (including any type that owns resources like
a heap-allocated buffer), assignment moves the value: the destination
takes ownership, and the source is no longer considered initialized.
Hence:

let t1 = s; // `t1` takes ownership from `s`
let t2 = s; // compile-time error: use of moved value: `s`

Passing arguments to a function and returning values from a func‐
tion are handled like assignment: they also move such types, rather
than copying. Moves leave the source unusable even if they’re only
possible, not certain:

let x = "might be used by f".to_string();
if flip_coin() {
 f(x); // value of `x` moved to `f`

24 | Why Rust?

}
x; // compile-time error: use of moved value: `x`

For simple types like primitive integers and characters, however,
there’s no meaningful difference between a move and a copy. Con‐
sider code like this:

let pi = 3.1415926f32;
let one_eighty = pi;
let circumference_to_diameter = pi;

We’re assigning pi twice, but there’s no good reason this shouldn’t
work; the concerns about ownership we raised above don’t apply to
simple types like f64.

So, Rust divides all types into one of two kinds:

• Some types can be copied bit-for-bit, without the need for any
special treatment; Rust permits such types to implement the
special trait Copy. Assignment copies Copy types, rather than
moving them: the source of the assignment retains its value.
The primitive numeric types are Copy, as are char, bool, and a
number of others.

• All other types are moved by assignment, never implicitly
copied.

Rust doesn’t implicly attach the Copy trait to newly defined types.
You must implement it explicitly, assuming you feel copy semantics
are appropriate for your type. Doing so is easy, since the Copy trait
has no methods:

impl Copy for MyCopyableType { }

However, Rust permits Copy implementations only for types that
qualify: all the values your type comprises must be Copy themselves,
and your type must not require custom behavior when it is dropped
(it mustn’t have a “destructor,” in C++ terms).

The Rust standard library includes a related trait, Clone, for types
that can be copied explicitly. Its definition is simple:

pub trait Clone {
 fn clone(&self) -> Self;
 fn clone_from(&mut self, source: &Self) { ... }
}

Memory Safety in Rust | 25

The clone method must return an independent copy of self. The
clone_from method does the reverse: it changes self into a clone of
its source argument. That is nothing we couldn’t do simply with a
call to clone and an assignment; in fact, this is the default definition.
However, some types can implement clone_from more efficiently,
perhaps by reusing resources the destination already owns.

Most of the standard library types implement Clone where possible.
Cloning a vector entails cloning each of its elements in turn, so
Vec<T> implements Clone whenever T does so; the other container
types behave similarly. String implements Clone, so we could make
our original code work as follows:

{
 let s = "Chez Rutabaga".to_string();
 let t1 = s.clone();
 let t2 = s.clone();
}

Now each of the three variables holds its own independent copy of
the text.

Obviously, any type that implements Copy can trivially implement
Clone as well:

 impl Clone for Color {
 fn clone(&self) -> Self { *self }
 }

Since MyCopyableType is Copy, simply returning it from the clone
method by value performs the copy required. So, for consistency,
Rust requires a type to implement Clone if it implements Copy.

Since these traits are both ubiquitous and tedious to implement, the
Rust compiler will write them for you, if you ask. The following
defines a type Color, which is copied by assignment, not moved:

#[derive(Copy, Clone)]
struct Color { r: u8, g: u8, b: u8 }

The #[derive(Copy, Clone)] attribute asks the compiler to auto‐
matically implement the Copy and Clone traits for Color, guided by
the structure of the type.

Where does all this leave us? We have a model for assignment that
respects the single-owner rule, and avoids implicit copies that might
have surprising costs, while allowing implicit copies where they
make sense. And the single-owner rule brings us big benefits: every

26 | Why Rust?

value is guaranteed to be dropped, at a well-defined point in the
code, without our having to write a line to make it happen.

You can take advantage of the fact that Rust drops values at well-
defined times to design interfaces for resource management that are
both trustworthy and easy to use. The Rust standard library uses this
technique to ensure that files and sockets are always closed, mutexes
are released, threads complete their tasks, and so on. This design
pattern resembles C++’s “Resource Acquisition Is Initialization”
idiom, but Rust’s careful integration of moves into the language
mean that ownership need not be fixed to a specific scope: the
resource-owning values can be passed around between functions
and threads, stored in data structures, and so on.

However, the single-owner rule is rather restrictive. Suppose we
want to write a function that adds an exclamation point to the end
of a String:

fn add_oomph(mut t: String) {
 t.push('!');
}

We might try to use it like this:

let mut s = "Hello, world".to_string();
add_oomph(s);
println!("{}", s);

Of course, this doesn’t compile. Passing parameters to functions
moves non-Copy arguments, just as assignment does, so the call to
add_oomph moves ownership of the string to the function, leading
the Rust compiler to reject the calling code with this error message:

error: use of moved value: `s`
println!("{}", s);
 ^
note: `s` moved here because it has type
`collections::string::String`, which is non-copyable
add_oomph(s);
 ^

The definition of add_oomph is hopeless anyway: t receives owner‐
ship of the string, we add the exclamation point, and then t goes out
of scope, so the String we just modified gets dropped.

We could fix all this by having add_oomph return the string to its
caller after modifying it:

Memory Safety in Rust | 27

fn add_oomph(mut t: String) -> String {
 t.push('!');
 t
}

let mut s = "Hello, world".to_string();
s = add_oomph(s);
println!("{}", s);

This works, but it’s circuitous: passing s to add_oomph moves the
string to t. We append the exclamation point there, and then return‐
ing t moves the string to the caller, which stores it back in s.

The escape from this comedy of errors is our second rule.

Rule 2: You can borrow a reference to a value, so long as the reference
doesn’t outlive the value (or equivalently, its owner). Although each
value has only a single owner, you can borrow references to a value
temporarily. A reference is a pointer that does not own its referent.
Rust restricts the use of references to ensure that they all disappear
before the value they refer to is dropped or moved, so references are
never dangling pointers.

Under this rule, we can make add_oomph borrow the string mutably,
rather than taking ownership of it. Instead of passing s directly, we
pass a mutable reference, written &mut, to the string. We must change
both the type of the function parameter, and the way we pass it:

fn add_oomph(t: &mut String) {
 t.push('!');
}

let mut s = "Hello, world".to_string();
add_oomph(&mut s);
println!("{}", s);

This time the program works as we had originally intended:
add_oomph receives a mutable reference to the string, adds an excla‐
mation point to it, and returns. When t goes out of scope, the bor‐
row has ended. Ownership of the string remains with s the entire
time—add_oomph only borrowed it—so the modified value is still
there when we reach the call to println!. We print the string
"Hello, world!", exclamation point included, and then when s
goes out of scope, we drop the string.

When we don’t need to modify a value, we can borrow a shared refer‐
ence to it, with a simple & instead of &mut:

28 | Why Rust?

fn print_in_quotes(t: &String) {
 println!("'{}'", t);
}

let mut s = "Hello, world".to_string();
add_oomph(&mut s);
print_in_quotes(&s);

Here, print_in_quotes takes a shared reference to our string, which
is sufficient for its needs. This program prints the text:

'Hello, world!'

While Rule 1 explains values’ lifetimes, Rule 2 constrains borrowed
references from outliving their referents. When we take a reference
to a value, Rust looks at how we use it (Is it passed to function?
Stored in a local variable? Saved in a data structure?) and assesses
how long it could live. (Since these checks are all done at compile
time, Rust can’t always be exact, and must sometimes err on the side
of caution.) Then, it compares the lifetime of the value with the life‐
time of the reference: if the reference could possibly outlive the
value it points to, Rust complains, and refuses to compile the pro‐
gram.

Some simple examples:

let x = String::new();
let borrow = &x;
let y = x; // error: cannot move out of `x` because
 // it is borrowed

While a value is borrowed, it musn’t be moved to a new owner: the
reference would still point at the original owner, which the move
leaves uninitialized. Similarly, a variable must not go out of scope
while it’s borrowed:

let borrow;
let x = String::new();
borrow = &x; // error: `x` does not live long enough

Since x is declared after borrow, it has a shorter lifetime; it’s as if we
had written:

{
 let borrow;
 {
 let x = String::new();
 borrow = &x; // error: `x` does not live long enough
 }
}

Memory Safety in Rust | 29

This is equivalent, but makes it clearer that borrow outlasts its refer‐
ent, which is forbidden. Reversing the two, however, is fine:

let x = String::new();
let borrow = &x;

Now the lifetime of x encloses the lifetime of borrow, so all is well.

Rust checks borrows of values in data structures, too. Here’s an
example using the vec! macro to construct a fresh instance of Rust’s
Vec type, analogous to a C++ std::vector or a Python list. Suppose
we borrow a reference to a vector’s element:

// create a new vector with one element
let mut v = vec!["hemlock"];

let borrow = &v[0]; // borrow that first element
v = vec!["wormwood"]; // error: cannot assign to `v`
 // because it is borrowed

When we assign the second vector to v, that causes its prior value to
be dropped—but borrow is holding a reference to that first vector’s
element. If Rust were to let the assignment proceed, borrow would
become a dangling pointer, referring to the freed storage of the first
vector.

But that error message is surprising: it says that all assignment to v is
forbidden for as long as the borrowed reference to one of its ele‐
ments exists. Which brings us to the next rule.

Rule 3: You can only modify a value when you have exclusive access to
it. In other words:

• While you borrow a shared reference to a value, nothing can
modify it or cause it to be dropped.

• While you borrow a mutable reference to a value, that reference
is the only way to access that value at all.

Our hemlock/wormwood example above breaks the “shared refer‐
ence” clause: we tried to modify v while (a portion of) it was bor‐
rowed. The borrow means that both v[0] and *borrow refer to the
same value: the vector’s first element. Since v does not have exclu‐
sive access to the value, we can’t modify it.

We could fix our code by restricting the lifetime of the borrow:

30 | Why Rust?

let mut v = vec!["hemlock"];
{
 let borrow = &v[0];
 ... // do things with borrow here
}
v = vec!["wormwood"]; // no error; borrow is gone by this point

As the term “shared reference” suggests, it’s fine to borrow as many
shared references to a value as you like:

fn sum_refs(a: &i32, b: &i32) -> i32 {
 *a + *b
}

let x: i32 = 128;
assert_eq!(sum_refs(&x, &x), 256);

But borrowing a mutable reference forbids any other access to the
value, whether through direct use of the variable:

let mut x = 128;
let b1 = &mut x;
x; // error: cannot use `x`
 // because it was mutably borrowed
x += 1; // error: cannot assign to `x` because it is borrowed

or though some other reference:

let mut x = 128;
let b1 = &x;
let b2 = &mut x; // error: cannot borrow `x` as mutable
 // because it is also borrowed as shareable

Note that these exclusion rules may apply to an entire data structure,
not just individual values. Suppose I have a vector of vectors of char‐
acters:

let mut v = Vec::new();
v.push(vec![' ', 'o', 'x']);
v.push(vec![' ', 'x', 'x']);
v.push(vec!['o', ' ', ' ']);

Borrowing an element of any of these four vectors causes Rust, in an
overabundance of caution, to freeze the entire structure:

// multiple shared borrows are fine, as before
let borrow = &v[2][2];
let borrow2 = &v[0][0];

// borrow is shared, so reads are fine
assert_eq!(v[1][0], ' ');
v[1][0] = 'o'; // error: cannot borrow `v` as mutable because
 // it is also borrowed as shared

Memory Safety in Rust | 31

The error message refers to a mutable borrow, rather than the
assignment we wrote, because Rust treats the expression v[1][0]
here as a chain of mutable borrows: first v, then v[1], and finally
v[1][0]. Rust’s analysis isn’t detailed enough to realize that we won’t
actually use that mutable borrow to interfere with our other shared
borrows from the row vectors, so it forbids the mutable borrow
from taking place at all.

Rust’s borrow checking has improved over time, and will continue
to do so. But any analysis carried out at compile time must inevita‐
bly make conservative approximations: it would be impossible to
accept all well-defined programs without inadvertently permitting
some ill-defined programs. While many developers find themselves
“fighting with the borrow checker” while learning Rust, over time
they generally develop an intuition for how to work within its con‐
straints.

So that’s what Rule 3 means. The motivation for it may be hard to
see, so let’s look at two examples of the problems it avoids. A direct
demonstration involves enumerations:

let mut opt = Some("cogito".to_string());
match opt {
 Some(ref r) => {
 opt = None;
 // What does r refer to now?
 },
 None => ()
}

We create an Option<String> that is a Some holding the String
"cogito". Then we match on that option. The pattern ref r means
that the variable r should be assigned a borrowed reference to the
value the Some is carrying, not the value itself. In this case, r
becomes a reference to the field of opt holding the string "cogito".
Then, while this reference still exists, we change opt to None. What
happens to the string we’re borrowing? In general, what happens to
the values carried by one variant of an enumeration when we replace
it with another variant? The memory set aside for the enumeration
has been reinitialized to a new collection of values; we can’t have ref‐
erences to the old values hanging around.

The Rust compiler agrees:

error: cannot assign to `opt` because it is borrowed
 opt = None;

32 | Why Rust?

 ^~~~~~~~~~
note: borrow of `opt` occurs here:
 Some(ref r) => {
 ^~~~~

But there’s really something more general going on here. The code
responsible for modifying some data structure must respect the
structure’s own rules, but it can’t reasonably accomodate arbitrary
references pointing into the midst of the structure while it does its
work.

Other languages acknowledge this in different ways. Regarding
modifying Java Hashtable objects while iterating through them, the
documentation for the class says:

[I]f the Hashtable is structurally modified at any time after the iter‐
ator is created, in any way except through the iterator’s own remove
method, the iterator will throw a ConcurrentModificationExcep‐
tion.

Similarly, the C++ Standard Template Library documentation for
“unordered associative containers” (known to the rest of us as “hash
tables”) says that operations that might rehash the table invalidate all
iterators into the table, and dereferencing an invalidated iterator is
undefined behavior. (There’s that “undefined behavior” again; break
this rule, and your program is allowed to do anything at all.)

There’s a wonderful example due to Aaron Turon of this problem in
action. Consider the following function, which appends elements to
the end of a vector:

fn append<T: Clone>(to: &mut Vec<T>, from: &[T]) {
 for elt in from {
 to.push(elt.clone());
 }
}

The syntax &[T] is new: this is a slice, a borrowed reference to a
range of elements in some array or vector. Slices can be mutable,
allowing you to modify their elements; a mutable slice is written
&mut [T]. Concretely, a slice is simply a pointer to the first element
in the range it refers to, together with a length. Like other forms of
borrowed references, slices don’t own the elements they refer to, and
all the restrictions on ordinary borrowed references apply.

Memory Safety in Rust | 33

Our append function takes a slice of elements borrowed from some‐
where, iterates over its elements, and pushes a copy of each one onto
the end of a given Vec. This works fine:

let v1 = vec![5, 13, 17, 29, 37, 41, 53];
let mut v2 = vec![];

append(&mut v2, &v1); // v2 was empty,
 // so becomes a copy of v1
assert_eq!(v1, v2);

(The expression &v1 evaluates to a slice referring to all of v1’s ele‐
ments.)

But what if we try to append a vector to itself?

let mut v3 = vec![0, 1, 0, -1];
append(&mut v3, &v3);

The for loop in our append_vector function will iterate through the
elements of the slice, pushing each one onto the end of v3. But when
a growable vector type like Vec runs out of space for new elements,
it must allocate a larger buffer, move the extant elements into it, and
then free the original buffer. When this occurs, any slices referring
to the original buffer become dangling pointers.

This is exactly what can happen in our second case: if a call to push
causes v3 to relocate its elements to a larger buffer, the slice we’re
iterating over becomes a pointer into freed memory: disaster.

The Rust compiler agrees:

error: cannot borrow `v3` as immutable because it is also
borrowed as mutable
 append(&mut v3, &v3);
 ^~
note: previous borrow of `v3` occurs here; the mutable
borrow prevents subsequent moves, borrows, or modification
of `v3` until the borrow ends
 append(&mut v3, &v3);
 ^~

Now that we have the exclusion rules in hand, let’s look at an inter‐
esting case. Returning a reference to one of our own local variables
would clearly earn us a “does not live long enough” error, but if a
function were to return a reference to one of its arguments, or some
part of one of its arguments, then that ought to be OK. Indeed, the
following is just fine:

34 | Why Rust?

fn first(v: &Vec<i32>) -> &i32 {
 return &v[0];
}

Rust reasons that, since the caller was apparently able to pass in a
reference to the vector, the vector must be alive for the duration of
the call: the borrow prevents anyone from moving, freeing, or modi‐
fying it. So, if we return a reference into the vector, that must be all
right.

Our first function might be used like this:

fn call_first() {
 let v = vec![42, 1729];
 let borrow = first(&v);
 assert_eq!(*borrow, 42);
}

Rust checks borrows in each function separately, using only the
types of the functions it calls, without looking into their definitions.
So all we know here is that first takes a reference to a vector, and
returns a reference to an i32. Rust assumes that, if a function
returns a reference, that reference must be to (some part of) some‐
thing we passed it, and thus should be treated like a borrowed refer‐
ence to one of the arguments.

In simple cases like first, it’s obvious which argument is being bor‐
rowed from, since there’s only one: v. In more complicated cases, it’s
not so clear. Suppose we had a double-barreled version of first that
returns a pair of references to the first elements of each of the two
vectors it is passed:

fn firsts(x: &Vec<i32>,
 y: &Vec<i32>)
 ->
 (&i32, &i32) {
 return (&x[0], &y[0]);
}

Here, we have two borrowed references being passed in, and two
being returned. It’s obvious from the definition which borrows from
which, but remember that callers of this function consider only its
type when checking borrows, without looking into its definition. So
callers work with only this:

fn firsts(x: &Vec<i32>, y: &Vec<i32>) -> (&i32, &i32);

Memory Safety in Rust | 35

With this view, we can still presume that the returned references are
borrowed from the arguments—but which from which? Rust rejects
the definition as ambiguous.

In definitions like this, Rust requires that we place explicit lifetimes
on the references to spell out the relationships. Whereas a reference
type with an inferred lifetime is written &i32 or &mut i32, reference
types with explicit lifetimes look like &'a i32 or &'x mut i32: the
'a or 'x are the lifetime names, traditionally kept to a single charac‐
ter. Adding these annotations to our double-barreled firsts func‐
tion gives us:

fn firsts<'a, 'b>(x: &'a Vec<i32>,
 y: &'b Vec<i32>)
 ->
 (&'a i32, &'b i32) {
 return (&x[0], &y[0]);
}

We add <'a, 'b> after the function name, since the function is
generic over any pair of lifetimes 'a and 'b. Then, we label each ref‐
erence passed into the function with an explicit lifetime: 'a repre‐
sents the lifetime of the first vector, 'b that of the second. Finally, we
label the references we return: the first &i32 must be borrowed from
the first vector, the second &i32 from the second vector. Now, when
callers consider the type of firsts, they see:

fn firsts<'a, 'b>(x: &'a Vec<i32>,
 y: &'b Vec<i32>)
 ->
 (&'a i32, &'b i32);

and they have all the information they need to ensure that the
returned references don’t outlive their referents.

References always have lifetimes associated with them; Rust simply
lets us omit them when the situation is unambigous. We could have
spelled out the lifetimes when defining our original first function,
yielding:

fn first<'a>(v: &'a Vec<i32>) -> &'a i32 {
 return &v[0];
}

This second definition is identical to the original; we’ve simply made
explicit what Rust assumed on our behalf.

36 | Why Rust?

Rust’s ownership, moves, and borrows end up being a reasonably
pleasant way to express resource management. The best way to see
this is to walk through a more complex example. Here is a complete
Rust program that counts the number of times each line appears in
its input stream:

use std::collections::BTreeMap;
use std::io::BufRead;

fn main() {
 let mut counts = BTreeMap::new();
 let stdin = std::io::stdin();
 for line_or_error in stdin.lock().lines() {
 let line = line_or_error.unwrap();
 *counts.entry(line).or_insert(0) += 1;
 }

 for (line, count) in counts.iter() {
 println!("{} {}", count, line);
 }
}

This short program provides several examples of the ownership
rules at work, so let’s break it down.

let mut counts = BTreeMap::new();

The call to BTreeMap::new() constructs a fresh instance of BTree
Map, an ordered map type from Rust’s standard library. We’ll use this
map to count the number of times we’ve seen each distinct line in
our input stream, associating strings with counts. Note that,
although Rust is a statically typed language, and this map has fixed
key and value types, we don’t need to write them out here; Rust is
able to infer the map’s type from the way it is used.

The constructor function returns the new map by value, not a
pointer to the map. And since BTreeMap is a non-Copy type, that
means that this initialization of counts is a move: counts takes own‐
ership of the map, and will drop it when it goes out of scope.

let stdin = std::io::stdin();

This call constructs a handle referring to our standard input stream,
and returns it by value. This is an instance of the Stdin type. Stdin
is also non-Copy, so as before, our variable stdin becomes its owner.

for line_or_error in stdin.lock().lines() {

Memory Safety in Rust | 37

Here, stdin.lock().lines() evaluates to an Iterator, which reads
from stdin and produces each line as a std::io::Result<String>
value, carrying either a line of text read from the stream, or an error
result if the read failed. This Result is also a non-Copy type, so on
each iteration of the for loop, line_or_error takes ownership of
the latest Result. (The expression stdin.lock().lines() does
some interesting things with ownership itself, but for now, take that
expression as a set phrase that ensures other threads won’t steal data
from the standard input stream while we loop over its lines.)

let line = line_or_error.unwrap();

The unwrap method of a std::io::Result<String> checks for
errors, exiting the program if it finds any. On success, it returns the
Result’s Ok value. The signature for the unwrap method of
std::result::Result<T, E> is:

fn unwrap(self) -> T

Note that self isn’t being passed by reference here: there’s no & or
&mut prefix on it. It’s being passed by value, which means the call
moves line_or_error’s value to unwrap: after this call,
line_or_error is no longer initialized. When the result is an Err,
this doesn’t matter; the program exits anyway. But when the result is
an Ok(line), this is very important: since unwrap has taken owner‐
ship of the value, it is free to return the Ok variant’s string by value.
So if unwrap returns at all, the variable line takes ownership of the
String.

Let’s pause a moment to consider what’s happening to the memory
that actually holds the text of each line. As the iterator reads each
line from our input stream, it allocates heap space to hold it. Owner‐
ship of that space moves from the iterator to line_or_error, then to
unwrap’s self, and then to line. But no copies of the text itself have
taken place; we’ve just moved the pointer to it around. And at every
point, the text has an single owner, apparent from the text of the
program. No reference counting, heap tracing, or other sophistica‐
ted techniques are needed to ensure it will be freed if an error occurs
in the process.

Furthermore, since Rust supports inlining across crates (especially
for generic functions like unwrap), optimization can reduce all this
to machine code that simply accepts the Result from the iterator,
checks whether it is Ok or Err, and then deals with the String. It’s

38 | Why Rust?

the same code you would write in C++, except that the compiler can
check that it’s been done correctly.

*counts.entry(line).or_insert(0) += 1;

Here we look up the entry for line in our BTreeMap, and bump its
count, providing zero as the initial value for new entries. The BTree
Map::entry method takes ownership of the key we pass; the method
now owns the string. If entry needs to create a new entry in the
map, we’ll use this string as the key; no copy takes place. Otherwise,
we already have an equivalent key in the table, and we drop the
string we were passed. In either case, entry returns a Entry value
pointing to the map’s entry for our line, vacant or occupied. Calling
or_insert ensures the entry is occupied, supplying an initial value
as needed. It returns a mutable reference to the entry’s value, which
we increment. Our line has been counted.

Again, notice that we have managed our dynamic storage with no
more machinery than we would have in idiomatic C++, but without
the opportunity to make accidental copies, dangling references, or
invalidated iterators. We pass around pointers to the text we’re han‐
dling, carefully transferring ownership from one site to the next,
until we have done the map lookup. At this point, we decide whether
to retain the line string as a key in the map or drop its storage
because the map already has another copy.

When we leave the first for loop, we drop the iterator. Our lock on
stdin goes away, and other threads can read from it again.

for (line, count) in counts.iter() {
 println!("{} {}", count, line);
}

The iterator returned by counts.iter() produces references to the
key and value. The loop body is just borrowing them; the map
retains ownership at all times. The println! macro knows enough
to automatically dereference its arguments, so we don’t need to write
*count and *line.

At the end of the function, we first drop stdin, and then counts.
Dropping the BTreeMap frees its keys and values. Every line we read
has its storage dropped either when we look it up in the map, or
when we drop the map, so there are no leaks.

Rust’s three rules combine to enforce a memory model with a com‐
bination of properties difficult to find elsewhere:

Memory Safety in Rust | 39

• Dangling pointers do not occur. Rust avoids other similar sorts
of reference-invalidation errors as well.

• Rust frees resources automatically and predictably.
• Rust accomodates programming with a direct imperative style,

with minimal reallocation and copying, and without garbage
collection.

We’ll see even more benefits of this system later when we discuss
concurrency.

No Buffer Overruns
Back in 1988, the Morris virus broke into Internet-connected com‐
puters by exploiting buffer overflows permitted by the gets library
function. In 2015, security flaws caused by programs writing untrus‐
ted data beyond the ends of their own buffers remain common:
according to the Open Source Vulnerability Database, buffer over‐
runs have constituted a steady 10%-15% of all reported vulnerabili‐
ties over the last eight years.

Why are buffer overruns so common? In C and C++, you don’t
actually index arrays; you index pointers, which carry no informa‐
tion about the start and end of the array or object they point into.
(Arrays are implicitly converted into pointers to their first element.)
Bounds checking is left entirely up to the programmer, and as we’ve
observed before, programmers often make minor mistakes; bounds
checking code is no exception. At various times, people have modi‐
fied C and C++ compilers to actually check for invalid memory ref‐
erences, using pointer representations that carry bounds along with
the actual address, but these modifications have been dropped over
time in favor of less precise tools.

In Rust, one does not index pointers. Instead, one indexes arrays
and slices, both of which have definite bounds.

A Rust array type is written [T; n], designating an array of n ele‐
ments of type T. When a Rust program indexes an array a with an
expression like a[i], the program first checks that i falls within the
array’s size n. Sometimes the compiler recognizes that this check can
be safely omitted, but when it can’t, Rust generates code to check the
array’s index at runtime. If the index is out of bounds, the thread
panics.

40 | Why Rust?

As explained earlier, a Rust slice is a borrowed pointer to a section of
some other array that actually owns the elements. A slice is repre‐
sented as a pointer to the first element included in the slice, together
with a count of the number of elements it comprises. If a is an array,
the expression &a[i..j] evaluates to a slice referring to the ith
through j-1th elements of a. When we create a slice, we check that
its start and end fall within the bounds of the array it borrows from;
and when we index a slice, we check that the index falls within the
slice.

So, for example:

fn fill(s: &mut[i32], n: i32) {
 for i in 0..s.len() {
 s[i] = n;
 }
}

let mut a = [6, 2, 7, 3, 1, 8, 5];
fill(&mut a[3..5], 0);
assert_eq!(a, [6, 2, 7, 0, 0, 8, 5]);

Here the function fill takes a mutable slice, and sets all its elements
to n. Below that, we declare an array of type [i32; 7], create a slice
referring to its fourth and fifth elements, pass that slice to fill to be
mutated, and then check that it now has the value one would expect.

This code performs bounds checks in two places. First, obviously,
each assignment in fill to s[i] must check that i is a valid index
for the slice s. Second, when we create the slice of a that we pass to
fill, we check that the requested range actually falls within the
array we’re borrowing from. Naturally, in this toy example, the
checks borrowing the slice can be optimized out, since the array’s
size and the slice’s range are all known at compile time. Less obvi‐
ously, in fill, the compiler may be able to recognize that i will
always be less than s.len(), and thus omit the bounds checks there
as well.

There is a better way to write fill, however. A for loop iterating
over a mutable slice produces a mutable reference to each element of
the slice in turn, allowing us to say:

fn fill(a: &mut[i32], n: i32) {
 for i in a {
 *i = n;

Memory Safety in Rust | 41

 }
}

Here, there is no bounds check needed when we store n; i is already
a mutable reference to the correct element. In producing that refer‐
ence, it’s the iterator itself that must index the slice; the bounds
check should occur at that point. But notice that the iterator is also
responsible for deciding when to exit the loop altogether; both the
bounds check and the end-of-loop check compare the current index
to the length of the slice. It seems a shame to do the same compari‐
son twice!

So, internally, the iterator iter_mut checks whether there are more
elements to handle, and if there are, uses unsafe code to produce the
reference to the element that skips the bounds check. The end result
is a loop that performs one comparison per iteration, just as you
would write in C or C++. Again, Rust has provided a comfortable,
safe abstraction at no cost.

Rust’s standard library includes many forms of iterators, written
with similar optimizations where appropriate, so that these off-the-
shelf iterators are usually both more legible and faster than loops
that index the array themselves. (Faster, that is, if the compiler isn’t
able to optimize out the check—which often it can.)

Multithreaded Programming
Now that we’ve outlined Rust’s rules regarding ownership and mem‐
ory safety, we’re finally able to present the crown jewel of Rust’s
design: concurrency without data races. In most languages, pro‐
grammers try to squeeze as much performance as they can out of
their single-threaded code, and turn to concurrency only when
there’s no alternative. In Rust, concurrency is much safer to use,
making it a technique you can design into your code from the
beginning: a method of first resort, not last resort. Rust also pro‐
vides high-level abstractions like channels and worker thread pools
to make concurrency convenient to use.

Creating Threads
Before we can show off Rust’s synchronization features, we need to
create some threads. The Rust std::thread::spawn function takes a
closure and runs it in a new thread. For example:

42 | Why Rust?

let thread1 = std::thread::spawn(|| {
 println!("Alphonse");
 return 137;
});
let thread2 = std::thread::spawn(|| {
 println!("Gaston");
 return 139;
});
assert_eq!(try!(thread1.join()), 137);
assert_eq!(try!(thread2.join()), 139);

This creates two threads, each of which prints a distinctive string
and exits. The std::thread::spawn call returns a JoinHandle, a
value whose join method waits for the thread to finish, and pro‐
vides whatever value the thread returned. After starting up the
threads, the main thread waits for each one to finish, and checks for
the expected value. (If the main thread exits first, all other threads
shut down immediately, so without the call to join we might not see
any output from them at all.)

Since the two threads don’t communicate at all, this program might
print the two strings in either order. However, the println! macro
locks the standard output stream while printing its text, so each
thread’s output will appear without being interleaved with any oth‐
er’s.

Since closures capture their environment, what happens if these two
threads try to share a local variable?

let mut x = 1;
let thread1 = std::thread::spawn(|| { x += 8 });
let thread2 = std::thread::spawn(|| { x += 27 });

Rust forbids this, making the following complaint about each call:

error: closure may outlive the current function, but it
borrows `x`, which is owned by the current function

Since our closure uses x from the surrounding environment, Rust
treats the closure as a data structure that has borrowed a mutable
reference to x. The error message complains that Rust can’t be sure
that the function to which x belongs won’t return while the threads
are still running; if it did, the threads would be left writing to a pop‐
ped stack frame.

Fair enough. But under such pessimistic rules, threads could never
be permitted to access local variables. It’s common for a function to
want to use concurrency as an implementation detail, with all

Multithreaded Programming | 43

threads finishing before the function returns, and in such a case the
local variables are guaranteed to live long enough. If we promise to
join our threads while x is still in scope, it seems like this isn’t suffi‐
cient reason to reject the program.

And indeed, Rust offers a second function, std::thread::scoped,
used very much like spawn, but willing to create a thread running a
closure that touches local variables, in a manner that ensures safety.
The scoped function has an interesting type, which we’ll summarize
as:

fn scoped<'a, F>(f: F) -> JoinGuard<'a>
 where F: 'a, ...

As with spawn, we expect a closure f as our sole argument. But
instead of returning a JoinHandle, scoped returns a JoinGuard.
Both types have join methods that return the result from the
thread’s closure, but they differ in their behavior when dropped:
whereas a JoinHandle lets its thread run freely, dropping a Join
Guard blocks until its thread exits. A thread started by scoped never
outlives its JoinGuard.

But now let’s consider how the lifetimes here nest within each other:

• Dropping JoinGuard waits for the thread to return; the thread
cannot outlive the JoinGuard.

• The JoinGuard that scoped returns takes lifetime 'a; the Join
Guard must not outlive 'a.

• The clause where F: 'a in the type of scoped says that 'a is the
closure’s lifetime.

• Closures of this form borrow the variables they use; Rust won’t
let our closure outlive x.

Following this chain of constraints from top to bottom, scoped has
ensured that the thread will always exit before the variables it uses
go out of scope. Rust’s compile-time checks guarantee that scoped
threads’ use of the surrounding variables is safe.

So, let’s try our program again, using scoped instead of spawn:

let mut x = 1;
let thread1 = std::thread::scoped(|| { x += 8; });
let thread2 = std::thread::scoped(|| { x += 27; });

We’ve solved our lifetime problems, but this is still buggy, because
we have two threads manipulating the same variable. Rust agrees:

44 | Why Rust?

error: cannot borrow `x` as mutable more than once at a time
 let thread2 = std::thread::scoped(|| { x += 27; });
 ^~~~~~~~~~~~~~~
note: borrow occurs due to use of `x` in closure
 let thread2 = std::thread::scoped(|| { x += 27; });
 ^
note: previous borrow of `x` occurs here due to use in closure;
the mutable borrow prevents subsequent moves, borrows, or
modification of `x` until the borrow ends
 let thread1 = std::thread::scoped(|| { x += 8; });
 ^~~~~~~~~~~~~~

What’s happened here is pretty amazing: the error here is simply a
consequence of Rust’s generic rules about ownership and borrowing,
but in this context they’ve prevented us from writing unsafe multi-
threaded code. Rust doesn’t actually know anything about threads; it
simply recognizes that this code breaks Rule 3: “You can only mod‐
ify a value when you have exclusive access to it.” Both closures mod‐
ify x, yet they do not have exclusive access to it. Rejected.

Indeed, if we rewrite our code to remove the modification of x, so
that the closures can borrow shared references to it, all is well. This
code works perfectly:

let mut x = 1;
let thread1 = std::thread::scoped(|| { x + 8 });
let thread2 = std::thread::scoped(|| { x + 27 });
assert_eq!(thread1.join() + thread2.join(), 37);

But what if we really did want to modify x from within our threads?
Can that be done?

Mutexes
When several threads need to read and modify some shared data
structure, they must take special care to ensure that these accesses
are synchronized with each other. According to C++, failing to do so
is undefined behavior; after defining its terms carefully, the 2011
C++ standard says:

The execution of a program contains a data race if it contains two
conflicting actions in different threads, at least one of which is not
atomic, and neither happens before the other. Any such data race
results in undefined behavior.

This is an extremely broad class of behavior to leave undefined: if
any thread modifies a value, and another thread reads that value,
and no appropriate synchronization operation took place to mediate

Multithreaded Programming | 45

between the two, your program is allowed to do anything at all. Not
only is this rule difficult to follow in practice, but it magnifies the
effect of any other bugs that might cause your program to touch
data you hadn’t intended.

One way to protect a data structure is to use a mutex. Only one
thread may lock a mutex at a time, so if threads access the structure
only while locking the mutex, the lock and unlock steps each thread
performs serve as the synchronization operations we need to avoid
undefined behavior.

Unfortunately, C and C++ leave the relationship between a mutex
and the data it protects entirely implicit in the structure of the pro‐
gram. It’s up to the developers to write comments that explain which
threads can touch which data structures, and what mutexes must be
held while doing so. Breaking the rules is a silent failure, and often
one whose symptoms are difficult to reproduce reliably.

Rust’s mutex type, std::sync::Mutex, leverages Rust’s borrowing
rules to ensure that threads never use a data structure without hold‐
ing the mutex that protects it. Each mutex owns the data it protects;
threads can borrow a reference to the data only by locking the
mutex.

Here’s how we can use std::sync::Mutex to let our scoped threads
share access to our local variable x:

let x = std::sync::Mutex::new(1);
let thread1 = std::thread::scoped(|| {
 *x.lock().unwrap() += 8;
});
let thread2 = std::thread::scoped(|| {
 *x.lock().unwrap() += 27;
});
thread1.join();
thread2.join();
assert_eq!(*x.lock().unwrap(), 36);

Compared to our prior version, we’ve changed the type of x from
i32 to Mutex<i32>. Rather than sharing mutable access to a local
i32 as attempted above, the closures now share immutable access to
the mutex. The expression x.lock().unwrap() locks the mutex,
checks for errors, and returns a MutexGuard value. Dereferencing a
MutexGuard borrows a reference (mutable or shareable, depending
on the context) to the value the mutex protects—in this case, our

46 | Why Rust?

i32 value. When the MutexGuard value is dropped, it automatically
releases the mutex.

Taking a step back, let’s look at what this API gives us:

• The only way to access the data structure a mutex protects is to
lock it first.

• Doing so gives us a MutexGuard, which only lets us borrow a
reference to the protected data structure. Rust’s Rule 2 (“You can
borrow a reference to a value, so long as the reference doesn’t
outlive the value”) ensures that we must end the borrow before
the MutexGuard is dropped.

• By Rust’s Rule 3 (“You can only modify a value when you have
exclusive access to it”), if we’re modifying the value, we can’t
share it with other threads. If we share it with other threads,
none of us can modify it. And recall that borrows affect the
entire data structure up to the final owner (here, the mutex). So
while our example mutex here only protects a simple integer,
the same solution can protect structures of any size and com‐
plexity.

• Rust’s Rule 1 (“Every value has a single owner at any given
time”) ensures that we will drop the MutexGuard at some well-
defined point in the program. We cannot forget to unlock the
mutex.

The result is a mutex API that grants threads access to shared muta‐
ble data, while ensuring at compile time that your program remains
free of data races. As before, Rust’s ownership and borrowing rules,
innocent of any actual knowledge of threads, have provided exactly
the checks we need to make mutex use sound.

The absence of data races (and hence the absence of
undefined behavior that they can cause) is critical, but
it’s not the same as the absence of nondeterministic
behavior. We have no way of knowing which thread
will add its value to x first; it could jump to 9 and then
36, or 28 and then 36. Similarly, we can only be sure
the threads have completed their work after both have
been joined. If we were to move our assertion before
either of the join calls, the value it saw would vary
from one run to the next.

Multithreaded Programming | 47

The std::thread::scoped function used here is
undergoing some redesign, because it turns out to be
unsafe in some (rare) circumstances. However that
problem is resolved, Rust will continue to support con‐
currency patterns like those shown here in some form
or another.

Channels
Another popular approach to multithreaded programming is to let
threads exchange messages with each other representing requests,
replies, and the like. This is the approach the designers of the Go
language advocate; the “Effective Go” document offers the slogan:

Do not communicate by sharing memory; instead, share memory
by communicating.

Rust’s standard library includes a channel abstraction that supports
this style of concurrency. One creates a channel by calling the
std::sync::mpsc::channel function:

fn channel<T>() -> (Sender<T>, Receiver<T>)

This function returns a tuple of two values, representing the back
and front of a message queue carrying values of type T: the
Sender<T> enqueues values, and the Receiver<T> removes them
from the queue.

The initialism “MPSC” here stands for “multiple producer, single
consumer”: the Sender end of a channel can be cloned and used by
as many threads as you like to enqueue values; but the Receiver end
cannot be cloned, so only a single thread is allowed to extract values
from the queue.

Let’s work through an example that uses channels to perform filesys‐
tem operations on a separate thread. We’ll spawn a worker thread to
carry out the requests, and then send it filenames to check. Here’s a
function that holds the worker’s main loop:

// These declarations allow us to use these standard library
// definitions without writing out their full module path.
use std::fs::Metadata;
use std::io::Result;
use std::path::PathBuf;
use std::sync::mpsc::{Sender, Receiver};

fn worker_loop(files: Receiver<PathBuf>,
 results: Sender<(PathBuf, Result<Metadata>)>) {

48 | Why Rust?

 for path_buf in files {
 let metadata = std::fs::metadata(&path_buf);
 results.send((path_buf, metadata)).unwrap();
 }
}

This function takes two channel endpoints as arguments: we’ll
receive filenames on files, and send back results on results.

We represent the filenames we process as std::path::PathBuf val‐
ues. A PathBuf resembles a String, except that whereas a String is
always valid UTF-8, a PathBuf has no such scruples; it can hold any
string the operating system will accept as a filename. PathBuf also
provides cross-platform methods for operating on filenames. The
standard library functions for working with the filesystem accept
references to PathBuf values as filenames.

The Receiver type works nicely with for loops: writing for
path_buf in files gives us a loop that iterates over each value
received from the channel, and exits the loop when the sending end
of the channel is closed.

For each PathBuf we receive, we call std::fs::metadata to look up
the given file’s metadata (modification time, size, permissions, and
so on). Whether the call succeeds or fails, we send back a tuple con‐
taining the PathBuf and the result from the metadata call on our
reply channel, results. Sending a value on a channel can fail if the
receiving end has been dropped, so we must call unwrap on the
result from the send to check for errors.

Before we look at the code for the client side, we should take note of
how the PathBuf ownership is being handled here. A PathBuf owns
a heap-allocated buffer that holds the path’s text, so the PathBuf type
cannot implement the Copy trait. Following Rust’s Rule 1, that means
that assigning, passing, or returning a PathBuf moves the value,
rather than copying it. The source of the move is left with no value.

The client’s sending end has type Sender<PathBuf>, which means
that when we send a PathBuf on that channel, it is moved into the
channel, which takes ownership. By Rust’s Rule 2, there can’t be any
borrowed references to the PathBuf when this move occurs, so the
sender has well and truly lost all access to the PathBuf and the heap-
allocated buffer it owns. At the other end, receiving a PathBuf from
the channel moves ownership from the channel to the caller. Each

Multithreaded Programming | 49

iteration of the for loop in worker_loop takes ownership of the next
PathBuf received, lets std::fs::metadata borrow it, and then
sends it back to the main thread, along with the results of the meta
data call. At no point do we ever need to copy the PathBufs heap-
allocated buffer; we just move the owning structure from client to
server, and then back again.

Once again, Rust’s rules for ownership, moves, and borrowing have
let us construct a simple and flexible interface that enforces isolation
between threads at compile time. We’ve allowed threads to exchange
values without opening up any opportunity for data races or other
undefined behavior.

Now we can turn to examine the client side:

use std::sync::mpsc::channel;
use std::thread::spawn;

let paths = vec!["/home/jimb/.bashrc",
 "/home/jimb/.emacs",
 "/home/jimb/nonesuch",
 "/home/jimb/.cargo",
 "/home/jimb/.golly"];

let worker;

// Create a channel the worker thread can use to send
// results to the main thread.
let (worker_tx, main_rx) = channel();

{
 // Create a channel the main thread can use to send
 // filenames to the worker.
 let (main_tx, worker_rx) = channel();

 // Start the worker thread.
 worker = spawn(move || {
 worker_loop(worker_rx, worker_tx);
 });

 // Send paths to the worker thread to check.
 for path in paths {
 main_tx.send(PathBuf::from(path)).unwrap();
 }

 // main_tx is dropped here, which closes the channel.
 // The worker will exit after it has received everything
 // we sent.
}

50 | Why Rust?

// We could do other work here, while waiting for the
// results to come back.
for (path, result) in main_rx {
 match result {
 Ok(metadata) =>
 println!("Size of {:?}: {}", &path, metadata.len()),
 Err(err) =>
 println!("Error for {:?}: {}", &path, err)
 }
}

worker.join().unwrap();

We start with a list of filenames to process; these are statically alloca‐
ted strings, from which we’ll construct PathBuf values. We create
two channels, one carrying filenames to the worker, and the other
conveying results back. The way we spawn the worker thread is new:

worker = spawn(move || {
 worker_loop(worker_rx, worker_tx);
});

This may look like a use of the logical “or” operator, ||, but move is
actually a keyword: move || { ... } is a closure, and || is its
empty argument list. The move indicates that this closure should
capture the variables it uses from its environment by moving them
into the closure value, not by borrowing them. In our present case,
that means that this closure takes ownership of the worker_rx and
worker_tx channel endpoints. Using a move closure here has two
practical consequences:

• The closure has an unrestricted lifetime, since it doesn’t depend
on local variables located in any stack frame; it’s carrying
around its own copy of all the values it needs. This makes it
suitable for use with std::thread::spawn, which doesn’t neces‐
sarily guarantee that the thread it creates will exit at any particu‐
lar time.

• When we create this closure, the variables worker_rx and
worker_tx become uninitialized in the outer function; the main
thread can no longer use them.

Having started the worker thread, the client then loops over our
array of paths, creating a fresh PathBuf for each one, and sending it
to the worker thread. When we reach the end of that block, main_tx

Multithreaded Programming | 51

goes out of scope, dropping its Sender value. Closing the sending
end of the channel signals worker_loop’s for loop to stop iterating,
allowing the worker thread to exit.

Just as the worker function uses a for loop to handle requests, the
main thread uses a for loop to process each result sent by the
worker thread, using a match statement to handle the success and
error cases, printing the results to our standard output.

Once we’ve processed all our results, we join on the worker thread
and check the Result; this ensures that if the worker thread pan‐
icked, the main thread will panic as well, so that failures are not
ignored.

On my machine, this program produces the following output:

Size of "/home/jimb/.bashrc": 259
Size of "/home/jimb/.emacs": 34210
Error for "/home/jimb/nonesuch": No such file or directory
(os error 2)
Size of "/home/jimb/.cargo": 4096
Size of "/home/jimb/.golly": 4096

It would be easy to extend our worker thread to receive not simple
filenames but an enumeration of different sorts of requests it could
handle: reading and writing files, deleting files, and so on. Or, we
could simply send it closures to call, turning it into a completely
open-ended worker thread. But no matter how we extend this struc‐
ture, Rust’s type safety and ownership rules ensure that our code will
be free of data races and heap corruption.

At Mozilla, there is a sign on the wall behind one of our engineer’s
desks. The sign has a dark horizontal line, below which is the text,
“You must be this tall to write multi-threaded code.” The line is
roughly nine feet off the ground. We created Rust to allow us to
lower that sign.

More Rust
Despite its youth, Rust is not a small language. It has many features
worth exploring that we don’t have space to cover here:

• Rust has a full library of collection types: sequences, maps, sets,
and so on.

52 | Why Rust?

• Rust has reference-counted pointer types, Rc and Arc, which let
us relax the “single owner” rules.

• Rust has support for unsafe blocks, in which one can call C
code, use unrestricted pointers, reinterpret a value’s bytes
according to a different type, and generally wreak havoc. But
safe interfaces with unsafe implementations turn out to be an
effective technique for extending Rust’s concept of safety.

• Rust’s macro system is a drastic departure from the C and C++
preprocessor’s macros, providing identifier hygiene and body
parsing that is both extremely flexible and syntactically sound.

• Rust’s module system helps organize large programs.
• Rust’s package manager, Cargo, interacts with a shared public

repository of packages, helping the community share code and
growing the ecosystem of libraries (called “crates”) available to
use in Rust.

You can read more about all these on Rust’s primary website, http://
www.rust-lang.org, which has extensive library documentation,
examples, and even an entire book about Rust.

Multithreaded Programming | 53

http://www.rust-lang.org

About the Author
Jim Blandy works for Mozilla on Firefox’s tools for web developers.
He is a committer to the SpiderMonkey JavaScript engine, and has
been a maintainer of GNU Emacs, GNU Guile, and GDB. He is one
of the original designers of the Subversion version control system.

	Cover
	Resources
	Copyright
	Table of Contents
	Chapter 1. Why Rust?
	Type Safety
	Reading Rust
	Generics
	Enumerations
	Traits

	Memory Safety in Rust
	No Null Pointer Dereferences
	No Dangling Pointers
	No Buffer Overruns

	Multithreaded Programming
	Creating Threads
	Mutexes
	Channels
	More Rust

