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1 Introduction

The main purpose of this paper is to establish a new kinematic formula for support
measures (or generalized curvature measures) of convex bodies. The proof depends on
a recent result of Schneider [10], which confirmed a conjecture of the author [4, 6]. For
surveys on integral geometry of convex bodies, the reader is referred to Schneider and
Wieacker [12], Schneider and Weil [11], and Section 4.5 in Schneider [8]. The latter book
is the basic reference for the geometric notions used below. For the measure theoretic
results we will need, see Ash [1] and Cohn [2], for example.

Let K be the set of all convex bodies, i.e. the set of all non-empty, compact, con-
vex subsets of Rn, and let K be endowed with the Hausdorff metric. Let 〈·, ·〉 be the
Euclidean inner product of Rn. Let Bn be the unit ball in Rn and Sn−1 its bounda-
ry. For K ∈ K, let NorK be the set of all support elements of K, i.e. the set of all
pairs (x, u) ∈ Σ := Rn × Sn−1 where x is a boundary point of K and u is an outer
unit normal vector of K at x. The support measures (or generalized curvature measu-
res) of a convex body K are common generalizations of Federer’s curvature measures
and the area measures of Aleksandrov–Fenchel–Jessen. They are the unique Borel mea-
sures Θ0(K; ·), . . . , Θn−1(K; ·) on Σ which are concentrated on NorK and satisfy the
Steiner-type relation∫

Rn\K

f dλn =
n−1∑
j=0

(
n− 1

j

) ∞∫
0

∫
Σ

tn−j−1f(x + tu) dΘj(K; (x, u)) dt (1)

for all Lebesgue integrable f : Rn → R; here λn is the Lebesgue measure on Rn. We will
make essential use of the fact that the maps K 7→ Θj(K; ·) are weakly continuous, i.e.
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if lim Ki = K, then lim
∫

f dΘj(Ki; ·) =
∫

f dΘj(K; ·) for all bounded Borel functions
f : Σ → R that are continuous Θj(K; ·)-almost everywhere.

We denote by B(X) the Borel σ-algebra of a topological space X. The measures
defined by Cj(K; A) := Θj(K; A × Sn−1), A ∈ B(Rn), are, apart from normalizing
constants, Federer’s curvature measures, and the equation Sj(K; ω) := Θj(K; Rn ×
ω), ω ∈ B(Sn−1), defines the area measures of Alexandrov–Fenchel–Jessen. The global
measure Θj(K; Σ) equals, up to constant multipliers, the quermassintegral Wn−j(K)
and the intrinsic volume Vj(K).

The Haar measure on the unimodular group Gn of all proper rigid motions of Rn

is denoted by µ, where the normalization is chosen so that µ({g ∈ Gn : g(0) ∈ Bn})
equals κn, the volume of the unit ball Bn. For η, η′ ⊂ Σ and a motion g ∈ Gn, let
gη := {(gx, g0u) ∈ Σ : (x, u) ∈ η}, where g0 is the rotational part of g, and

η ∧ η′ := {(x, u) ∈ Σ : there are u1, u2 ∈ Sn−1 with (x, u1) ∈ η,

(x, u2) ∈ η′, and u ∈ pos{u1, u2}} ,

where pos denotes the positive hull operation.
The following theorem can be viewed as an extension of a special case of Federer’s

principal kinematic formula [3]. In Theorems 1 and 3 below, we assume that the domains
of the measures Θj(K; ·) are extended to the respective completions of B(Σ).

Theorem 1. Let K, K ′ ∈ K, η, η′ ∈ B(Σ), and j ∈ {0, . . . , n− 1}. Then we have∫
{g∈Gn:K∩gK′ 6=∅}

Θj(K ∩ gK ′; (η ∩ NorK) ∧ g(η′ ∩ NorK ′)) dµ(g)

=
κn−j

nκnκj

n−1∑
k=j+1

(
n− j

k − j

)
κkκn+j−k

κn−kκk−j

Θk(K; η)Θn+j−k(K
′; η′) .

Theorem 1 was proved in Glasauer [5] under some restrictions on the bodies K, K ′

(see [5], Theorem 3.1), which can now be removed by the following recent result of
Schneider [10]. Recall that the normal cone N(K, x) of a convex body K at a boundary
point x is the set of all outer normal vectors of K at x. The boundary of K ∈ K is
denoted by bdK.

Theorem 2 (Schneider). Let K, K ′ ∈ K. Then for µ-almost all g ∈ Gn, the linear
hulls of the normal cones N(K, x), N(gK ′, x) have trivial intersection for all x ∈ bdK∩
bdgK ′.

Remark. There is an extension of Theorem 1 to finite unions of convex bodies, see
[5], Theorem 3.3. It is an interesting open question whether there are extensions to more
general sets.

The main purpose of this paper is to prove a “dual” counterpart to Theorem 1, which
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can be stated as follows. For η, η′ ⊂ Σ let

η ∨ η′ := {(x, u) ∈ Σ : there are x1, x2 ∈ Rn with x1 − x2 ⊥ u, (x1, u) ∈ η,

(x2, u) ∈ η′, and x ∈ [x1, x2]} ,

where [x1, x2] is the closed line segment with endpoints x1, x2. The convex hull of the
union of two convex bodies K, K ′ is denoted by K ∨K ′.

Theorem 3. Let j ∈ {0, . . . , n− 1}. Then we have

lim
r→∞

1

rn+1

∫
{g∈Gn:gK′⊂rBn}

Θj(K ∨ gK ′; (η ∩ NorK) ∨ g(η′ ∩ NorK ′)) dµ(g)

=
κn−1

(n + 1)nκn

j−1∑
k=0

Θk(K; η)Θj−k−1(K
′; η′)

uniformly for all η, η′ ∈ B(Σ) and all K, K ′ ∈ K contained in a fixed ball.

The proof of Theorem 3 will be given in the next section. An essential ingredient is
the following recent result of Schneider [10] (the formulation there is equivalent to the
one given here).

Theorem 4 (Schneider). Let K, K ′ ∈ K. Then for µ-almost all g ∈ Gn, the following
is true. For each point x ∈ (bd(K ∨ gK ′))\(K ∪ gK ′), there are unique points y ∈ K
and z ∈ gK ′ with x ∈ [y, z].

Both Theorem 3 and Theorem 4 were conjectured by the author in [6], where it was
stated that Theorem 3 can be proved if Theorem 4 holds true. Special cases of Theorems
2 and 4 were proved in [4, 5, 6]. Corresponding versions of Theorems 1 – 4 in spherical
space were established in [4].

The setup of the paper is as follows. Section 2 contains the proof of Theorem 3. In
Section 3, the concept of mixed support measures is introduced and generalizations of
Theorems 1 and 3 for these new functionals are stated.

2 Proof of Theorem 3

Let us first observe that for strictly convex K, K ′, Theorem 3 follows from a known
result.

Lemma 1. Theorem 3 holds if K and K ′ are strictly convex.
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Proof. The following is a special case of Theorem 5 in [6]: Let j ∈ {0, . . . , n − 1}.
Then

lim
r→∞

1

rn+1

∫
{g∈Gn:gK′⊂rBn}

Sj(K ∨ gK ′; ω ∩ g0ω
′) dµ(g)

=
κn−1

(n + 1)nκn

j−1∑
k=0

Sk(K; ω)Sj−k−1(K
′; ω′) (2)

uniformly for all ω, ω′ ∈ B(Sn−1) and all K, K ′ ∈ K which are contained in a fixed ball.

For strictly convex K ∈ K and η ∈ B(Σ) we define ωK,η := {u ∈ Sn−1 : (x, u) ∈
η ∩ NorK for an x ∈ Rn}. Let hK : Sn−1 → R be the support function of K, i.e.
hK(u) := maxx∈K〈x, u〉 = 〈τK(u), u〉 for u ∈ Sn−1, where τK(u) is the boundary point
of K with outer normal vector u.

Now let K, K ′ ∈ K be strictly convex and let η ⊂ NorK and η′ ⊂ NorK ′ be Borel
sets. We have

η ∨ η′ = (Rn × (ωK,η ∩ ωK′,η′ ∩ {hK = hK′})) ∩ Nor(K ∨K ′) .

In fact, let (x, u) ∈ η ∨ η′. Let x1, x2 ∈ Rn with 〈x1, u〉 = 〈x2, u〉, (x1, u) ∈ η,
(x2, u) ∈ η′, and x ∈ [x1, x2]. We have hK(u) = hK′(u) = 〈x1, u〉 = 〈x, u〉. Thus
(x, u) ∈ Nor(K ∨K ′) and u ∈ ωK,η ∩ωK′,η′ ∩{hK = hK′}. Now let (x, u) ∈ Nor(K ∨K ′)
with u ∈ ωK,η ∩ ωK′,η′ and hK(u) = hK′(u). Let x1 := τK(u), x2 := τK′(u). It follows
that (x1, u) ∈ η, (x2, u) ∈ η′, and x ∈ [x1, x2], as required.

We infer from this equation that

Sj(K ∨K ′; ωK,η ∩ ωK′,η′)− Sj(K; Sn−1)− Sj(K
′; Sn−1)

≤ Sj(K ∨K ′; ωK,η ∩ ωK′,η′ ∩ {hK = hK′})
= Θj(K ∨K ′; η ∨ η′)

≤ Sj(K ∨K ′; ωK,η ∩ ωK′,η′)

for all j ∈ {0, . . . , n− 1}. We also have

Θj(K; η) = Sj(K; ωK,η), Θj(K
′; η′) = Sj(K

′; ωK′,η′) .

Now the assertion follows from equation (2).

We now want to extend our formula to general convex bodies by approximation.

We collect some notations which will be used below. Let K, K ′ ∈ K. We define
Σ1(K, K ′) as the set of all (x, u) ∈ NorK ∪ NorK ′ such that there is a hyperplane
which supports both K and K ′, with both bodies on the same side of it, and which is
orthogonal to u and contains x. We let Σ2(K, K ′) := Nor(K ∨ K ′)\(NorK ∪ NorK ′).
We define G(K, K ′) to be the set of all motions g ∈ Gn such that for each x ∈ (bd(K ∨
gK ′))\(K ∪ gK ′) there are unique points y ∈ K, z ∈ gK ′ with x ∈ [y, z]. Theorem 4
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says that for all K, K ′ ∈ K there is a Borel subset of G(K, K ′) whose complement has µ-
measure zero. For g ∈ G(K, K ′) we define two maps, πg,K,K′ and π′g,K,K′ , on Σ2(K, gK ′)

by the requirement that πg,K,K′(x, u) := (y, u), π′g,K,K′(x, u) := (g−1z, g−1
0 u), where y, z

are the unique points in K, gK ′, respectively, with x ∈ [y, z]. The images of πg,K,K′ ,
π′g,K,K′ are contained in NorK, NorK ′, respectively.

Lemma 2. For µ-almost all g ∈ Gn, we have Θj(K ∨ gK ′; Σ1(K, gK ′)) = 0 for all
j ∈ {0, . . . , n− 1}.

Proof. Let j ∈ {0, . . . , n−1}. Let E be the set of all hyperplanes in Rn, and let E(K)
be the subset of all support planes of K (these sets are endowed with their natural
topologies). For A ⊂ E , let ηA := {(x, u) ∈ Σ : x ∈ H, H ⊥ u for an H ∈ A}. Define a
measure ρ(K; ·) on E by

ρ(K; A) := Θj(K; ηA), A ∈ B(E).

We have Σ1(K, gK ′) ⊂ ηE(K)∩E(gK′) ∩ (NorK ∪ NorgK ′) and therefore

Θj(K ∨ gK ′; Σ1(K, gK ′)) ≤ ρ(K; E(K) ∩ E(gK ′)) + ρ(gK ′; E(K) ∩ E(gK ′)) .

We will show that both terms in this sum are zero for µ-almost all g. We denote the
rotation invariant probability measure on the rotation group SOn by ν. The line through
0 orthogonal to a hyperplane H is written as H⊥. The Fubini theorem shows that∫

Gn

ρ(K; E(K) ∩ E(gK ′)) dµ(g)

=

∫
SOn

∫
Rn

∫
E

1E(K)(H)1E(ϑK′)+x(H) dρ(K; H)dλn(x)dν(ϑ)

=

∫
SOn

∫
E

1E(K)(H)

∫
H

∫
H⊥

1E(ϑK′)(H + y + z) dλ1(y)dλn−1(z)dρ(K; H)dν(ϑ)

= 0 ,

since H +y ∈ E(ϑK ′) for at most two values of y ∈ H⊥. Hence ρ(K; E(K)∩E(gK ′)) = 0
for µ-almost all g, and the same reasoning applies to the second term.

Lemma 3. Let j ∈ {0, . . . , n− 1}. Then we have

lim
r→∞

1

rn+1

∫
{g∈Gn:gK′⊂rBn}

∫
Σ2(K,gK′)

(f ◦ πg,K,K′)(f ′ ◦ π′g,K,K′) dΘj(K ∨ gK ′; ·)dµ(g)

=
κn−1

(n + 1)nκn

j−1∑
k=0

∫
Σ

f dΘk(K; ·)
∫
Σ

f ′ dΘj−k−1(K
′; ·)

uniformly for all continuous f, f ′ : Σ → R with 0 ≤ f, f ′ ≤ 1 and all strictly convex
bodies K, K ′ ∈ K contained in a fixed ball.
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Proof: Let j ∈ {0, . . . , n− 1}, let K, K ′ ∈ K be strictly convex, and let η, η′ ∈ B(Σ).
We have G(K, K ′) = Gn. By using Lemma 2 we obtain

Θj(K ∨ gK ′; (η ∩ NorK) ∨ g(η′ ∩ NorK ′))

= Θj(K ∨ gK ′; ((η ∩ NorK) ∨ g(η′ ∩ NorK ′))\Σ1(K, gK ′))

= Θj(K ∨ gK ′; ((η ∩ NorK) ∨ g(η′ ∩ NorK ′)) ∩ Σ2(K, gK ′))

=

∫
Σ2(K,gK′)

1(η∩NorK)∨g(η′∩NorK′) dΘj(K ∨ gK ′; ·)

=

∫
Σ2(K,gK′)

(1η ◦ πg,K,K′)(1η′ ◦ π′g,K,K′) dΘj(K ∨ gK ′; ·)

for µ-almost all g ∈ Gn. From this and Lemma 1 it follows that

lim
r→∞

1

rn+1

∫
{g∈Gn:gK′⊂rBn}

∫
Σ2(K,gK′)

(f ◦ πg,K,K′)(f ′ ◦ π′g,K,K′) dΘj(K ∨ gK ′; ·)dµ(g)

=
κn−1

(n + 1)nκn

j−1∑
k=0

∫
Σ

f dΘk(K; ·)
∫
Σ

f ′ dΘj−k−1(K
′; ·)

uniformly for all strictly convex K, K ′ ∈ K contained in a fixed ball and all simple
functions f, f ′ : Σ → R with 0 ≤ f, f ′ ≤ 1, i.e. functions of the type

∑m
i=1 ci1ηi

with
m ∈ N, 0 ≤ ci ≤ 1, and pairwise disjoint Borel sets η1, . . . , ηm ⊂ Σ. Since every non-
negative continuous function is the pointwise limit of an increasing sequence of simple
functions, the monotone convergence theorem shows the assertion.

Lemma 4. Lemma 3 holds also for general convex bodies K, K ′ ∈ K.

Proof. Let K, K ′ ∈ K. Let (Ki)i∈N, (K ′
i)i∈N be sequences of strictly convex bodies

such that Ki+1 ⊂ intKi, K ′
i+1 ⊂ intK ′

i for all i, where int denotes the interior, and
lim Ki = K, lim K ′

i = K ′. (The existence of such sequences follows easily from Theorem
3.3.1 in Schneider [8].) Let g ∈ G(K, K ′) be such that Θj(K ∨ gK ′; Σ1(K, gK ′)) = 0.
Since Ki, K ′

i are strictly convex, we have G(Ki, K
′
i) = Gn for i ∈ N. Let K0 := K,

K ′
0 := K ′. Let f, f ′ ∈ C(Σ). Let m ∈ N. We define

Am := {(x, u) ∈
⋃
i∈N0

Nor(Ki ∨ gK ′
i) : |x− y| ≥ 1

m
for all (y, v) ∈

⋃
i∈N0

Σ1(Ki, gK ′
i)},

Bm := {(x, u) ∈ Σ : |x− y| ≥ 1

m
for all (y, v) ∈

⋃
i∈N0

Σ1(Ki, gK ′
i)}.

The set Am is a closed subset of Bm, since
⋃

i∈N0
Nor(Ki ∨ gK ′

i) is closed, and also Bm

is a closed set, hence a normal subspace of Σ.
Define a function g1 : A1 → R as follows. If (x, u) ∈ A1 ∩ Σ2(Ki, gK ′

i) for one (and
only one) i ∈ N0, let g1(x, u) := f(πg,Ki,K′

i
(x, u))f ′(π′g,Ki,K′

i
(x, u)). For the remaining

(x, u) ∈ A1, we define g1(x, u) := 0.
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The function g1 : A1 → R thus defined is continuous: Let (x, u) ∈ A1, and let
((xm, um))m∈N be a sequence in A1 converging to (x, u). Then (x, u) ∈ Nor(Ki ∨ gK ′

i)
for a unique i ∈ N0. The pair (x, u) is either in NorKi, in NorgK ′

i, or in Σ2(Ki, gK ′
i).

If (x, u) ∈ NorKi, then (xm, um) ∈
⋃

i∈N0
NorKi for almost all m ∈ N and therefore

g1(x, u) = 0 and g1(xm, um) = 0 for almost all m. The case (x, u) ∈ NorgK ′
i is analogous.

If (x, u) ∈ Σ2(Ki, gK ′
i), then there is a sequence (im)m∈N of non-negative integers such

that (xm, um) ∈ Σ2(Kim , gK ′
im) for almost all m. Let ym and zm be the unique points

in Kim , gK ′
im , respectively, with xm ∈ [ym, zm] and let y, z be the points in Ki, gK ′

i,
respectively, with x ∈ [y, z]. Assume that ym does not converge to y for m →∞. Then
there is a convergent subsequence (ymk

)k∈N with ȳ := limk→∞ ymk
6= y. Let z̄ be a limit

point of the sequence (zmk
)k∈N. We conclude that x ∈ [ȳ, z̄]. Since ȳ ∈ Ki and z̄ ∈ gK ′

i,
this contradicts the fact that g ∈ G(Ki, gK ′

i). Thus lim ym = y, and analogously we get
lim zm = z. Hence lim πg,Kim ,K′

im
(xm, um) = πg,Ki,K′

i
(x, u) and lim π′g,Kim ,K′

im
(xm, um) =

π′g,Ki,K′
i
(x, u), and therefore lim g1(xm, um) = g1(x, u), as required.

We can now apply Tietze’s extension theorem to extend g1 to a continuous function
h1 on B1. If m ∈ N and hm : Bm → R is already defined, let gm+1 be the extension of
hm to the set Bm ∪ Am+1 which is defined in the same way as g1. Then apply Tietze’s
theorem to extend gm+1 to a continuous function hm+1 on Bm+1. In this way, we obtain
continuous functions hm : Bm → R with hm+1|Bm = hm for all m ∈ N.

Now define a function h : Σ → R as follows. If (x, u) ∈ Σ\
⋃

i∈N0
Σ1(Ki, gK ′

i),
then (x, u) ∈ Bm for a sufficiently large m, since

⋃
i∈N0

Σ1(Ki, gK ′
i) is closed; we

let h(x, u) := hm(x, u). If (x, u) ∈
⋃

i∈N0
Σ1(Ki, gK ′

i), we let h(x, u) := 0. So if
(x, u) ∈ Nor(Ki ∨ gK ′

i) for an i ∈ N0, then h(x, u) = f(πg,Ki,K′
i
(x, u))f ′(π′g,Ki,K′

i
(x, u))

in the case (x, u) ∈ Σ2(Ki, gK ′
i) and h(x, u) = 0 if (x, u) ∈ NorKi ∪ NorgK ′

i. Since
Θj(K ∨ gK ′; Σ1(K, gK ′)) = 0, the function h is continuous Θj(K ∨ gK ′; ·)-almost every-
where, and it is Borel measurable and bounded. Now the weak continuity of the support
measures implies that

lim
i→∞

∫
Σ2(Ki,gK′

i)

(f ◦ πg,Ki,K′
i
)(f ′ ◦ π′g,Ki,K′

i
) dΘj(Ki ∨ gK ′

i; ·)

= lim
i→∞

∫
Σ

h dΘj(Ki ∨ gK ′
i; ·)

=

∫
Σ

h dΘj(K ∨ gK ′; ·)

=

∫
Σ2(K,gK′)

(f ◦ πg,K,K′)(f ′ ◦ π′g,K,K′) dΘj(K ∨ gK ′; ·).
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The dominated convergence theorem, Lemma 2, and Theorem 4 show that

lim
i→∞

∫
{g∈Gn:gK′

i⊂rBn}

∫
Σ2(Ki,gK′

i)

(f ◦ πg,Ki,K′
i
)(f ′ ◦ π′g,Ki,K′

i
) dΘj(Ki ∨ gK ′

i; ·)dµ(g)

=

∫
{g∈Gn:gK′⊂rBn}

∫
Σ2(K,gK′)

(f ◦ πg,K,K′)(f ′ ◦ π′g,K,K′) dΘj(K ∨ gK ′; ·)dµ(g) (3)

for all r > 0. According to Lemma 3, for a given ε > 0, there is an r0 > 0 such that for
all r ≥ r0 we have∣∣∣∣∣ 1

rn+1

∫
{g∈Gn:gK′

i⊂rBn}

∫
Σ2(Ki,gK′

i)

(f ◦ πg,Ki,K′
i
)(f ′ ◦ π′g,Ki,K′

i
) dΘj(Ki ∨ gK ′

i; ·)dµ(g)

− κn−1

(n + 1)nκn

j−1∑
k=0

∫
Σ

f dΘk(Ki; ·)
∫
Σ

f ′ dΘj−k−1(K
′
i; ·)

∣∣∣∣∣ ≤ ε

for all continuous f, f ′ : Σ → R with 0 ≤ f, f ′ ≤ 1 and all i ∈ N. In addition, r0 depends
only on the radius of the smallest centered ball containing all Ki, K

′
i and not on the

particular choices of the bodies Ki, K
′
i. Now (3) shows that∣∣∣∣∣ 1

rn+1

∫
{g∈Gn:gK′⊂rBn}

∫
Σ2(K,gK′)

(f ◦ πg,K,K′)(f ′ ◦ π′g,K,K′) dΘj(K ∨ gK ′; ·)dµ(g)

− κn−1

(n + 1)nκn

j−1∑
k=0

∫
Σ

f dΘk(K; ·)
∫
Σ

f ′ dΘj−k−1(K
′; ·)

∣∣∣∣∣ ≤ ε

for all r ≥ r0, and the proof of Lemma 4 is complete.

Proof of Theorem 3. Let K, K ′ ∈ K, and let η ∈ B(NorK), η′ ∈ B(NorK ′). It can
easily be shown that (η∨ gη′)\Σ1(K, gK ′) is a Borel set for all g ∈ G(K, K ′). Hence the
map Fη,η′ : g 7→ Θj(K∨gK ′; η∨gη′) is defined on a set of full µ-measure. We want to show
that Fη,η′ is measurable. Assume that η and η′ are compact. Then there are decreasing
sequences (fi)i∈N, (f ′i)i∈N in C(Σ) with 0 ≤ fi, f

′
i ≤ 1 and lim fi = 1η, lim f ′i = 1η′ in

the sense of pointwise convergence. The limit limi→∞ 1Σ2(K,gK′)(fi ◦ πg,K,K′)(f ′i ◦ π′g,K,K′)
equals the indicator function of the set (η ∨ gη′)\Σ1(K, K ′) for all g ∈ G(K, K ′). Thus
the monotone convergence theorem, Lemma 2, Theorem 4, and the proof of Lemma
4 show that Fη,η′ is the limit of measurable functions µ-almost everywhere and hence
is measurable on a set of full measure. Let η′ ⊂ NorK ′ still be compact. The set of
all η ∈ B(NorK) such that Fη,η′ is measurable on a set of full measure can easily be
shown to be a Dynkin system. Since it contains all compact sets, it must coincide with
B(NorK), so Fη,η′ has the required property for compact η′. We can now apply the same
argument to see that Fη,η′ is measurable on a set of full measure for all η ∈ B(NorK),
η′ ∈ B(NorK ′).
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Let us define

ϕ(r, K, K ′, η, η′) :=
1

rn+1

∫
{g∈Gn:gK′⊂rBn}

Θj(K ∨ gK ′; (η ∩ NorK) ∨ g(η′ ∩ NorK ′)) dµ(g)

− κn−1

(n + 1)nκn

j−1∑
k=0

Θk(K; η)Θj−k−1(K
′; η′)

for all r > 0, K, K ′ ∈ K, and η, η′ ∈ B(Σ). It follows from Lemma 2, Theorem 4, and the
monotone convergence theorem that ϕ(r, K, K ′, η, η′) is a finite signed measure in both
η and η′. Approximating the indicator functions of compact sets η, η′ ⊂ Σ by monotone
sequences of continuous functions as before, we deduce from Lemma 4 that for all ε > 0
there is an r0 > 0 with

|ϕ(r, K, K ′, η, η′)| ≤ ε

for all r ≥ r0, all compact η, η′ ⊂ Σ, and all K,K ′ ∈ K that are contained in a fixed
ball. Using the regularity of finite signed measures on Σ, we deduce that this inequality
also holds for Borel sets η and compact sets η′. In the same way we finally obtain it for
arbitrary η, η′ ∈ B(Σ). This concludes the proof of Theorem 3.

3 Mixed support measures and extensions

of Theorems 1 and 3

In this section, we want to introduce the concept of mixed support measures and state
generalizations of Theorems 1 and 3 for these new functionals.

Let Sn−1(K; ·) = Θn−1(K; Rn × ·) be the area measure of K ∈ K. For n-dimensional
convex bodies K and Borel subsets ω of the sphere, Sn−1(K; ω) equals the (n − 1)-
dimensional Hausdorff measure of the set of all x ∈ bdK such that there exists an
outer unit normal vector of K at x that belongs to ω. The mixed area measures
S(K1, . . . , Kn−1; ·) appear as coefficients in the polynomial expansion of the area measure
of a Minkowski linear combination of convex bodies: we have

Sn−1(λ1K1 + · · ·+ λmKm; ·) =
m∑

i1,...,in−1=1

λi1 · · ·λin−1S(Ki1 , . . . , Kin−1 ; ·) (4)

for all m ∈ N, K1, . . . , Km ∈ K, λ1, . . . , λm ≥ 0, see Schneider [8], p. 275.
Let S be the set of all strictly convex bodies. For M ∈ S and u ∈ Sn−1, we defined

τM(u) to be the boundary point of M with outer normal vector u. Let sM : Sn−1 → Σ,
u 7→ (τM(u), u). For a positive real number λ, we define a map tλM : Σ → Σ by means
of tλM(x, u) := ((x − τM(u))/λ, u). Both sM and tλM are continuous and hence Borel
measurable.

Theorem 5. For j ∈ {0, . . . , n − 2}, K ∈ K, and M1, . . . ,Mn−j−1 ∈ S, there are
unique Borel measures Θj(K; M1, . . . ,Mn−j−1; ·) on Σ, such that they are symmetric in
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M1, . . . ,Mn−j−1 and satisfy

tλλ1M1+···+λmMm
(Θn−1(λK + λ1M1 + · · ·+ λmMm; ·)) = λn−1Θn−1(K; ·) +

+
n−2∑
j=0

(
n− 1

j

)
λj

m∑
i1,...,in−j−1=1

λi1 · · ·λin−j−1
Θj(K; Mi1 , . . . ,Min−j−1

; ·) (5)

for all m ∈ N, M1, . . . ,Mm ∈ S, λ > 0, and λ1, . . . , λm ≥ 0. These measures are
concentrated on NorK, and they depend weakly continuously on K ∈ K.

We call the functional Θj(K; ·; ·) the jth mixed support measure of K. It can easily
be deduced from (1) and (5) that Θj(K; Bn, . . . , Bn; ·) = Θj(K; ·) for all K ∈ K and
j ∈ {0, . . . , n− 2}.

Proof. The uniqueness statement is clear. For the following existence argument, com-
pare the proof of Lemma 5.1.3 in [8].

We let ajl, j ∈ {0, . . . , n− 1}, l ∈ {1, . . . , n}, be the real numbers with(
n− 1

m

) n∑
l=1

ajl l
m = δjm (Kronecker symbol) (6)

for all j, m ∈ {0, . . . , n − 1}. Let K ∈ K, j ∈ {0, . . . , n − 2}, and M1, . . . ,Mn−j−1 ∈ S.
We define the signed measure

Θj(K; M1, . . . ,Mn−j−1; ·)

:=
1

(n− j − 1)!

n∑
l=1

ajl

n−j−1∑
k=1

(−1)n−j−1+k

∑
1≤i1<···<ik≤n−j−1

tlMi1
+···+Mik

(Θn−1(lK + Mi1 + · · ·+ Mik ; ·)). (7)

It is symmetric in M1, . . . ,Mn−j−1, concentrated on the set NorK, and weakly continuous
in K.

We now assume K ∈ S. Since Θn−1(M ; ·) = sM(Sn−1(M ; ·)) and tλM ◦ sλK+M = sK

for all M ∈ S, λ > 0, we deduce that

Θj(K; M1, . . . ,Mn−j−1; ·)

=
1

(n− j − 1)!

n∑
l=1

ajl

n−j−1∑
k=1

(−1)n−j−1+k

∑
1≤i1<···<ik≤n−j−1

sK(Sn−1(lK + Mi1 + · · ·+ Mik ; ·)). (8)

Now it follows from (4) and (6) that Θj(K; λ1M1, . . . , λn−j−1Mn−j−1; ·) is a homogeneous
polynomial of degree n− j − 1 in λ1, . . . , λn−j−1 ≥ 0. We see from (6) and (7) that

Θj(K; λ1M1, . . . , λi−1Mi−1, {0}, λi+1Mi+1, . . . , λn−j−1Mn−j−1; ·) = 0
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for all i ∈ {1, . . . , n − j − 1}. Therefore each coefficient of a monomial in
Θj(K; λ1M1, . . . , λn−j−1Mn−j−1; ·) that does not contain λi is zero. Thus there is a num-
ber β with

Θj(K; λ1M1, . . . , λn−j−1Mn−j−1; ·) = β λ1 · · ·λn−j−1

and it follows from (4), (6), and (8) that β = sK(S(K, . . . , K, M1, . . . ,Mn−j−1; ·)). We
conclude that

Θj(K; M1, . . . ,Mn−j−1; ·) = sK(S(K, . . . , K, M1, . . . ,Mn−j−1; ·)).

It follows that Θj(K; M1, . . . ,Mn−j−1; ·) is a positive measure, and from (4) we infer
that the asserted relation (5) holds for all strictly convex K ∈ S.

The general assertion can now be seen by approximating an arbitrary convex body
by strictly convex ones.

We are now in a position to formulate our extension of Theorem 3. Let f : Sn−1 → R
be a non-negative continuous function. Let δ > 0. Define a measure α on B(Rn) by means
of

α(A) :=

∞∫
0

tδ−1

∫
Sn−1

1A(tu)f(u) dσ(u)dt,

where σ is the spherical Lebesgue measure. Let ν be the invariant probability measure
on the rotation group SOn. Let µα be the image of the product measure α ⊗ ν on
Rn × SOn under the map Rn × SOn → Gn, (x, ϑ) 7→ gx,ϑ, where the motion gx,ϑ is
defined by gx,ϑ(y) := x + ϑy. There is a unique convex body Zα ∈ K with support
function

∫
Bn |〈x, ·〉| dα(x), see [8], Theorem 1.7.1. A straightforward computation shows

that this support function is of class C1, so Zα is strictly convex (cf. [8], Corollary 1.7.3).
Let j ∈ {0, . . . , n−1}, and let M1, . . . ,Mn−j−1 ∈ S be strictly convex bodies. As before,
we extend the domain of the measure Θj(K; M1, . . . ,Mn−j−1; ·), K ∈ K, by replacing
this measure by its completion. Now the following can be stated.

Theorem 6. Under the above assumptions, we have

lim
r→∞

1

rδ+1

∫
{g∈Gn:gK′⊂rBn}

Θj(K∨gK ′; M1, . . . ,Mn−j−1; (η∩NorK)∨g(η′∩NorK ′)) dµα(g)

=
1

2nκn

j−1∑
k=0

Θk(K; M1, . . . ,Mn−j−1, B
n, . . . , Bn, Zα; η)Θj−k−1(K

′; η′)

uniformly for all η, η′ ∈ B(Σ) and all K, K ′ ∈ K contained in a fixed ball.

We omit the proof of Theorem 6, since it follows exactly the same lines as the proof
of Theorem 3 but requires a clumsier notation.

We remark that it is the continuity of f that insures the existence of the limit for
all Borel sets η, η′, see the proof of Theorem 4 in [6]. Of course, Zα is the zonoid whose
generating measure has the density 1

δ+1
f with respect to σ.
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Finally, we want to state a generalization of Theorem 1 without proof. This is a result
in the spirit of Hadwiger’s general kinematic formula ([7], Section 6.3.5) and Schneider’s
local version of it ([9], but see [4], pp. 105 - 108, for a simpler proof).

Denote by En
j the set of all j-dimensional affine subspaces of Rn, endowed with its

usual topology, and let µj be the Haar measure on En
j , normalized by µj({E ∈ En

j :
E ∩Bn 6= ∅}) = κn−j. For E ∈ En

j and η ⊂ Σ, we let

η ∧ E := {(x, u) ∈ Σ : there are u1, u2 ∈ Sn−1 with (x, u1) ∈ η,

(x, u2) ∈ E × E⊥, and u ∈ pos{u1, u2}} ,

where E⊥ is the (n− j)-dimensional linear subspace orthogonal to E. Now the following
can be stated.

Theorem 7. Let Ψ : K × B(Σ) → R be a map with the following properties.

1. Ψ(K; ·) is a measure, concentrated on NorK for all K ∈ K.

2. For K, K ′ ∈ K, η ∈ B(Σ) with η ∩ NorK = η′ ∩ NorK ′, we have Ψ(K; η) =
Ψ(K ′; η′).

3. The map K 7→ Ψ(K; ·) is weakly continuous.

Denote the completion of the measure Ψ(K; ·) by Ψ(K; ·). For k ∈ {1, . . . , n−1}, K ∈ K,
η ∈ B(Σ), the integral

Ψk(K; η) :=

∫
{E∈En

n−k:K∩E 6=∅}

Ψ(K ∩ E; (η ∩ NorK) ∧ E) dµn−k(E)

exists, and we have∫
{g∈Gn:K∩gK′ 6=∅}

Ψ(K ∩ gK ′; (η ∩ NorK) ∧ g(η′ ∩ NorK ′)) dµ(g)

=
n−1∑
k=1

(
n
k

)
nκk

Ψk(K; η)Θn−k(K
′; η′)

for all K, K ′ ∈ K and all η, η′ ∈ B(Σ).

The proof of Theorem 7 combines techniques developed in [4], [5], and in the present
paper.

Remarks. 1. Examples for the measure Ψ(K; ·) are the mixed support measures
Θj(K; M1, . . . ,Mn−j−1; ·). In the case Ψ(K; ·) := Θj(K; ·), the Crofton formula proved
in [5], Theorem 3.2, shows that Theorem 7 contains Theorem 1 as a special case.

2. It is easy to see that a map K 7→ Ψ(K; ·) satisfying conditions 1 and 2 of Theorem 7
is a valuation. Now one can apply Groemer’s extension theorem for continuous valuations
(see, e.g., [11], Satz 2.4.2) to extend Theorem 7 to finite unions of convex bodies. See [5]
for a definition of the set NorK if K is a finite union of convex bodies and for additional
arguments required to establish this extension.
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