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1 Subject of the dissertation

A recent survey article on integral geometry of convex bodies in Euclidean space was
written by Schneider & Wieacker [10], introductory accounts with full proofs are Schneider
& Weil [9] and section 4.5 in Schneider [7].

The above authors’ approach utilizes results about convex bodies and invariant measures
on homogeneous spaces, in particular no methods from differential geometry are required.
The main results are local kinematic formulas for convex bodies and finite unions of them.

The aim of the dissertation [4] was to investigate whether and to what extend this ap-
proach can be pursued also in spherical space. This question is interesting because the
sphere Sn and its motion group SOn+1 lack the product structure of Euclidean space and
its motion group, which is essential in some integral geometric proofs. Also the principle of
spherical duality suggests some additional questions, which can also be considered in the
Euclidean case, but have not been treated up to now.

In the following we summarize our results. The main theorems are stated in sections 5
to 7, while sections 3 and 4 contain auxiliary material.

2 Notations

We use the following notations:

1AMS subject classifications (1991): 52A22, 52A55. This is a summary of the doctoral thesis [4].
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Rn+1 Euclidean (n + 1)-space, equipped with standard inner product 〈·, ·〉 and
induced norm ‖ · ‖,

Sn unit sphere of Rn+1 (set of all unit vectors),
K set of all (spherically) convex bodies, i.e. all compact subsets K ⊂ Sn such

that for all x, y ∈ K with x 6= −y the spherical segment joining x and y is
contained in K,

R set of all finite unions of elements of K,
K ∨K ′ spherically convex hull of K,K ′ ∈ K, i.e. the union of all spherical segments

joining all x, y ∈ K ∪K ′ with x 6= −y,
P set of all (spherically convex) polytopes, i.e. all spherically convex hulls of

finitely many one-point sets,
F(P ) set of all faces of a polytope P ∈ P (including ∅ and P ),
Sj set of all j-subspheres, i.e. all sets L ∩ Sn with (j + 1)-dimensional linear

subspaces L of Rn+1,
B(X) σ-algebra of all Borel subsets of a topological space X,
βi := 2π(i+1)/2/Γ( i+1

2 ), the surface area of the i-dimensional unit sphere,
SOn+1 group of all proper rotations of Rn+1,
ν invariant probability measure on B(SOn+1),
νj image measure of ν under the map SOn+1 → Sj , ρ 7→ ρS (where S ∈ Sj is

chosen arbitrarily),
λn spherical Lebesgue measure on B(Sn), normalized by λn(Sn) = βn,
d(x, y) := arccos〈x, y〉, spherical distance of x, y ∈ Sn,
d(K,x) := min{d(x, y) : y ∈ K}, distance of a point x ∈ Sn from K ∈ K (in case

K = ∅ we let d(K,x) := π/2 for all x ∈ Sn),
Kε := {x ∈ Sn : d(K,x) ≤ ε}, parallel body of K ∈ K,
K∗ := {x ∈ Sn : 〈x, y〉 ≤ 0 for all y ∈ K}, polar body of K ∈ K,
p(K,x) the unique point in K ∈ K with smallest distance to x ∈ Sn, where d(K,x) <

π/2,
u(K,x) := p(K∗, x) for K ∈ K, x ∈ Sn\K with d(K,x) < π/2,
Nor K := {(x, u) ∈ K ×K∗ : 〈x, u〉 = 0}, set of all support elements of K ∈ K.

Equipped with the Hausdorff metric δ defined by δ(K,K ′) := min{ε ≥ 0 : K ⊂ K ′
ε and

K ′ ⊂ Kε}, K becomes a compact metric space. The subset P is dense in K.

3 Steiner formulae

From our standpoint the basic functionals of spherically convex bodies are the support
measures, which are defined within the following theorem.

Theorem 1. For K ∈ K there exist uniquely determined finite Borel measures Θj(K, ·),
j ∈ {0, . . . , n− 1}, on Sn × Sn such that for 0 < ε < π/2 and η ∈ B(Sn × Sn) we have

λn({x ∈ Sn : 0 < d(K,x) ≤ ε, (p(K,x), u(K,x)) ∈ η})
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=
n−1∑
j=0

βjβn−j−1Θj(K, η)
∫ ε

0
cosj t sinn−j−1 t dt .

The measure Θj(K, ·) defined by this local Steiner formula is called the jth generalized
curvature measure or the jth support measure of K ∈ K. A very general Steiner-type
result in space forms was proved by Kohlmann [5] using deeper methods from differential
geometry and geometric measure theory. We proved Theorem 1 in an elementary way by
first computing the local parallel volume in the case of polytopes and then applying an
approximation procedure. The measures Θj(K, ·) are weakly continuous in K ∈ K. If K is
a polytope or a sufficiently smooth convex body, there are direct geometric interpretations
of the measures Θj(K, ·), see [4], pp. 48 - 50, where one can also find explicit representations
for the cases j = n− 1 and j = 0 for general K ∈ K.

By specialization we get some further functionals from the support measures. The mea-
sures defined on B(Sn) by

Φj(K,A) := Θj(K,A× Sn), j ∈ {0, . . . , n− 1}, Φn(K,A) :=
1
βn
λn(K ∩A)

are called curvature measures, the global measures

Vj(K) := Φj(K,Sn), j ∈ {0, . . . , n},

we call the intrinsic volumes and the vectors

kj(K) :=
∫

Sn

x dΦj(K,x) ∈ Rn+1

the curvature vectors of K ∈ K. The functionals K 7→ Θj(K, ·) can be extended in a unique
way from K to R such that the extended functionals are additive, i.e. for all K,K ′ ∈ R
we have Θj(K ∪ K ′, ·) + Θj(K ∩ K ′, ·) = Θj(K, ·) + Θj(K ′, ·) (where the extensions are
denoted by the same symbols). These extensions give rise also to additive extensions of the
functionals Φj , Vj , and kj .

Theorem 1 can be used to generalize a result of Arnold [2] from n ≤ 3 to arbitrary n.

Theorem 2. Let K ∈ K and let 0 < ε < π/2 so that Kε ∈ K. Then for j ∈ {0, . . . , n}
we have kj(Kε) =

∑n
i=0 γnij(ε) ki(K), where γnij(ε) are numbers defined explicitly in [4],

pp. 23 and 20.

4 Properties of the support measures

The support measures behave nicely under polarity, as shown by the following result.

Theorem 3. Let K ∈ K, η ∈ B(Sn × Sn) and j ∈ {0, . . . , n − 1}. Then Θj(K, η) =
Θn−j−1(K∗, η−1), where η−1 := {(u, x) ∈ Sn × Sn : (x, u) ∈ η}.
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It is possible to characterize the linear combinations of the support measures by some of
their most elementary properties:

Theorem 4. Let ψ : P × B(Sn × Sn) → R be a map with the following properties:
(a) ψ(P, ·) is a finite signed measure, concentrated on Nor P , for all P ∈ P.
(b) For all P ∈ P, η ∈ B(Sn × Sn) and ρ ∈ SOn+1 we have ψ(ρP, ρη) = ψ(P, η).
(c) For P, P ′ ∈ P and η ∈ B(Sn × Sn) with η ∩ Nor P = η ∩ Nor P ′ we have ψ(P, η) =
ψ(P ′, η).
Then there exist constants c0, . . . , cn−1 ∈ R with ψ(P, ·) =

∑n−1
i=0 ciΘi(P, ·) for all P ∈ P.

In a similar way also the positive linear combinations of the curvature measures can
be characterized. Here we have to impose the additional postulate of additivity on the
functional under consideration.

Theorem 5. Let ψ : P × B(Sn) → R be a map with the following properties:
(a) ψ(P, ·) is a finite positive measure, concentrated on P , for all P ∈ P.
(b) For all P ∈ P, A ∈ B(Sn) and ρ ∈ SOn+1 we have ψ(ρP, ρA) = ψ(P,A).
(c) For P, P ′ ∈ P and open subsets B ⊂ Sn with P∩B = P ′∩B we have ψ(P,A) = ψ(P ′, A)
for all A ∈ B(Sn) with A ⊂ B.
(d) For P, P ′ ∈ P with P ∪ P ′ ∈ K we have ψ(P ∪ P ′, ·) + ψ(P ∩ P ′, ·) = ψ(P, ·) + ψ(P ′, ·).
Then there exist constants c0, . . . , cn ≥ 0 with ψ(P, ·) =

∑n
i=0 ciΦi(P, ·) for all P ∈ P.

The following version of a Gauss–Bonnet theorem for finite unions of spherically convex
bodies is a special case of general results of Allendoerfer & Weil [1]. There are different
proofs by several other authors. By using an idea of McMullen [6], we gave a proof which
is particularly simple. We denote by χ(K) the Euler characteristic of the set K ∈ R, i.e. χ
is the unique additive map from R to R with the properties χ(∅) = 0 and χ(K) = 1 for all
K ∈ K that are not subspheres.

Theorem 6. For K ∈ R we have χ(K) = 2
∑[n/2]

i=0 V2i(K).

Our proof is based on the following Lemma, a version of which was stated in [6], p. 249,
without proof. If P ∈ P and F ∈ F(P ) we let F̂ := {x ∈ P ∗ : 〈x, y〉 = 0 for all y ∈ F}. By
1A we denote the indicator function of a set A.

Lemma. For all P ∈ P that are not subspheres the function∑
F∈F(P )

(−1)dim F1F∨(−F̂ )

vanishes λn-almost everywhere.

5 Kinematic formulae for curvature measures

Our version of the principal kinematic formula for curvature measures can be stated as
follows:
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Theorem 7. Let K,K ′ ∈ R and A,B ∈ B(Sn). Then for all j ∈ {0, . . . , n} we have∫
SOn+1

Φj(K ∩ ρK ′, A ∩ ρB) dν(ρ) =
n∑

k=j

Φk(K,A)Φn+j−k(K ′, B) .

The main auxiliary results used in our proof were Theorem 5, the weak continuity of
the curvature measures, and Theorem 6. There are numerous remarkable consequences of
Theorem 7, for which we refer to [4], pp. 58 - 66. We wish to state the following new
consequences for the curvature vectors kj .

Corollary. For K,K ′ ∈ K and j ∈ {0, . . . , n} we have∫
SOn+1

kj(K ∩ ρK ′) dν(ρ) =
n∑

l=j

kl(K)Vn+j−l(K ′) ,

∫
SOn+1

kj(K ∨ ρK ′) dν(ρ) =
j−1∑
l=0

αl

αj
kl(K)Vj−l−1(K ′) + kj(K)

(
1−

n∑
i=0

Vi(K ′)
)
,

where αj = jβjβn−j−1/((n− j)βn−jβj−1), 1 ≤ j ≤ n− 1, and αn = 1/α0 = nβn/(2βn−1).

With the help of Theorem 5 one can also prove an abstract version of Theorem 7, which
can be stated as follows.

Theorem 8. Let Λ : K × B(Sn) → R be a map with the following properties:
(a) Λ(K, ·) is a finite positive measure, concentrated on K, for all K ∈ K.
(b) Λ(K, ·) is weakly continuous in K ∈ K.
(c) For K,K ′ ∈ K and open B ⊂ Sn with K ∩ B = K ′ ∩ B we have Λ(K,A) = Λ(K ′, A)
for all A ∈ B(Sn) with A ⊂ B.
(d) For K,K ′ ∈ K with K∪K ′ ∈ K we have Λ(K∪K ′, ·)+Λ(K∩K ′, ·) = Λ(K, ·)+Λ(K ′, ·).
Then for all K,K ′ ∈ K und A,B ∈ B(Sn) we have∫

SOn+1

Λj(K ∩ ρK ′, A ∩ ρB) dν(ρ) =
n∑

k=j

Λk(K,A)Φn+j−k(K ′, B)

for all j ∈ {0, . . . , n}, where Λj(K, ·) is defined by Λj(K,A) :=
∫

Sn−j

Λ(K ∩ S,A) dνn−j(S).

The corresponding result in Euclidean space is due to Schneider [8]. Our method of proof
can also be applied in the Euclidean case, where it gives a more direct and simpler proof
than the one presented in [8].

6 Kinematic formulae for support measures

There is a generalization of Theorem 7 from curvature measures to support measures. In
order to formulate this result, we must define a law of composition between two subsets of
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Sn × Sn which is adapted to the intersection of two convex bodies. For η, η′ ⊂ Sn × Sn we
let

η ∧ η′ := {(x, u) ∈ Sn × Sn : u ∈ [u1, u2] with u1, u2 ∈ Sn, u1 6= −u2,

(x, u1) ∈ η, (x, u2) ∈ η′} ,

where [u1, u2] is the closed spherical segment joining the points u1, u2 ∈ Sn, u1 6= −u2.
In the following we assume the measures Θj(K, ·) to be complete (we do not introduce
new symbols for the completions). The spherical principal kinematic formula for support
measures of convex bodies can now be stated as follows.

Theorem 9. Let K,K ′ ∈ K and η ∈ B(Nor K), η′ ∈ B(Nor K ′). Then for j ∈
{0, . . . , n− 1} we have∫

SOn+1

Θj(K ∩ ρK ′, η ∧ ρη′) dν(ρ) =
n−1∑

k=j+1

Θk(K, η)Θn+j−k(K ′, η′) .

If we define the set Nor K also for K ∈ R in an appropriate way, Theorem 9 remains
valid also for sets K,K ′ ∈ R. Since according to Theorem 3 the support measures behave
well under polarity, we can infer the following dualized version from Theorem 9. Here we
denote for η, η′ ⊂ Sn × Sn

η ∨ η′ := (η−1 ∧ η′−1)−1 = {(x, u) ∈ Sn × Sn : x ∈ [x1, x2] with x1, x2 ∈ Sn,

x1 6= −x2, (x1, u) ∈ η, (x2, u) ∈ η′} .

Theorem 10. Let K,K ′ ∈ K and η ∈ B(Nor K), η′ ∈ B(Nor K ′). Then for j ∈
{0, . . . , n− 1} we have

∫
SOn+1

Θj(K ∨ ρK ′, η ∨ ρη′) dν(ρ) =
j−1∑
k=0

Θk(K, η)Θj−k−1(K ′, η′) .

The proof of Theorem 9 is considerably more difficult than that of Theorem 7. We want
to state one major lemma, which can be derived from a result of Schneider ([7], Corollary
2.3.11). For K ∈ K we let N(K,x) := {y ∈ K∗ : 〈x, y〉 = 0}, and we denote the linear hull
operation by lin.

Lemma. Let K,K ′ ∈ K. Then for ν-almost all ρ ∈ SOn+1 we have

lin N(K,x) ∩ lin N(ρK ′, x) = {0}

for all x ∈ K ∩ ρK ′.
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The Euclidean counterpart to Theorem 9 could be proved only in the case that one of the
convex bodies K,K ′ is a polytope, since in the general case the Euclidean version of the
Lemma turned out to be difficult. Possibly the methods of Ewald et al. [3] and Zalgaller
[11] might be applied to solve this problem. We proved the analog of Theorem 9 in the
case where the moving object is an affine subspace; this a very general local version of the
Crofton formula. A special case of this formula gives rise to a new intuitive interpretation
of the area measures of convex bodies, introduced by Aleksandrov, Fenchel, and Jessen.
Euclidean analogs to Theorem 10 are not known up to now.

From Theorem 9 a projection formula for the support measures can be derived. If K ∈ K
is a convex body and S ∈ Sj , 0 ≤ j ≤ n − 1, is a subsphere, K|S := (K ∨ S∗) ∩ S ∈ K is
the projection of K in S. If x /∈ S∗ we let x|S := p(S, x) be the projection of x in S, in
case x ∈ S∗ the expression x|S shall be undefined. For η ⊂ Sn × Sn we let

η|S := {(x|S, u) ∈ Sn × Sn : (x, u) ∈ η, x /∈ S∗, u ∈ S} .

In the following theorem, Θ(S)
j (K, ·) denotes the support measure of a convex body K ⊂ S,

computed in the subsphere S.

Theorem 11. Let K ∈ K, q ∈ {1, . . . , n − 1}, j ∈ {0, . . . , q − 1} and η ∈ B(Nor K).
Then ∫

Sq

Θ(S)
j (K|S, η|S) dνq(S) = Θj(K, η) .

The Euclidean counterpart to Theorem 11 is due to Schneider (see [7], Theorem 4.5.10).

7 Distance integrals

Let 0 < ε < π/2 and let K,K ′ ∈ K\{∅} such that Kε ∈ K or K ′
ε ∈ K. Then for all

ρ ∈ SOn+1 such that the minimal distance r(K, ρK ′) := min{d(x, y) : x ∈ K, y ∈ ρK ′} of
K and ρK ′ satisfies 0 < r(K, ρK ′) < ε there are unique points x(K, ρK ′) ∈ K, x(ρK ′,K) ∈
ρK ′ realizing the minimal distance: d(x(K, ρK ′), x(ρK ′,K)) = r(K, ρK ′). Adding the
definitions u(K, ρK ′) := u(K,x(ρK ′,K)), u(ρK ′,K) := u(ρK ′, x(K, ρK ′)), we can ask for
the measure of the set

Lε(K,K ′, η, η′) := {ρ ∈ SOn+1 : 0 < r(K, ρK ′) < ε,

(x(K, ρK ′), u(K, ρK ′)) ∈ η, (x(ρK ′,K), u(ρK ′,K)) ∈ ρη′} ,

where η and η′ are Borel subsets of Sn × Sn. This measure is computed in our last result
in terms of the support measures of K and K ′:

Theorem 12. Let 0 < ε < π/2, and let K,K ′ ∈ K\{∅} such that Kε ∈ K or K ′
ε ∈ K.

Then for η, η′ ∈ B(Sn × Sn) we have

ν(Lε(K,K ′, η, η′))
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=
n−1∑
k=0

k∑
l=0

n−k−1∑
m=0

αnklmΘn−k+l−m−1(K, η)Θn−l−m−1(K ′, η′)
∫ ε

0
cosk t sinn−k−1 t dt ,

where

αnklm := (−1)n−k−m−1

(
n−1

k

)(
k
l

)(
n−k−1

m

)(
n−1

k−l+m

)(
n−1
l+m

) βk−l+mβn−k+l−m−1βl+mβn−l−m−1

βnβn−1
.
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