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Abstract. We establish extensions of the Crofton formula and, under some restrictions, of the
principal kinematic formula of integral geometry from curvature measures to generalized curvature
measures of convex bodies. We also treat versions for finite unions of convex bodies. As a consequence,
we get a new intuitive interpretation of the area measures of Aleksandrov and Fenchel–Jessen.

Key words: Convex bodies, generalized curvature measures, boundary structure, Crofton for-
mula, principal kinematic formula.

Mathematics Subject Classifications (1991): 52A20, 52A22.

The subject of this paper is the generalization of two integral geometric intersection formulae for
curvature measures of convex bodies: the Crofton formula and the principal kinematic formula. The
curvature measures of Federer are replaced by the so-called generalized curvature measures, which
are concentrated on the set of all support elements of a convex body, and which for this reason
we will also call support measures. The proofs of these extensions depend on certain easy-to-state
assertions about the boundary structure of convex bodies. For one of these assertions, we were only
able to give a proof under some restrictions on the convex bodies under consideration. This results
in corresponding limitations for our generalized principal kinematic formula. We strongly conjecture
that in fact these restrictions are not necessary. Our version of the Crofton formula, which can be
proved without any restrictions, gives rise to a new intuitive interpretation of the support measures
and especially of the area measures of convex bodies. We also treat extensions to the convex ring, the
set of all finite unions of convex bodies. For analogous results in spherical space, see my thesis [1],
which also contains the results of the present article. The paper [2] is a summary of [1]. It remains
open whether there exist extensions to classes of more general sets, as considered in the case of the
curvature measures, e.g., by Rother & Zähle [3]. For a recent survey on integral geometry of convex
bodies, see Schneider & Wieacker [7].

1 Preliminaries

We work in n-dimensional Euclidean space Rn with standard inner product 〈·, ·〉, induced norm
‖ · ‖ and origin o. The linear and affine hull operation is denoted by lin and aff, respectively.
Sn−1 := {x ∈ Rn : ‖x‖ = 1} is the unit sphere. Let K be the space of all convex bodies, i.e. the set
of all compact, convex subsets of Rn (including the empty set), topologized as usual. The interior of
a convex body K is written int K, the relative interior relint K, the boundary bd K, the dimension
dimK. Let P ⊂ K be the set of all polytopes, i.e. the convex hulls of finite sets.
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For K ∈ K\{∅} and x ∈ Rn let d(K,x) be the Euclidean distance of x to K, and let p(K,x) ∈ K
be the metric projection of x in K, i.e. the point in K nearest to x. If d(K,x) > 0, let u(K,x) :=
(x− p(K,x))/d(K,x) be the outer unit normal vector of K pointing to x. We let Σ := Rn × Sn−1

and Nor K := {(p(K,x), u(K,x)) ∈ Σ : x ∈ Rn\K} for K ∈ K\{∅} and in addition Nor ∅ := ∅. We
refer to the elements of Nor K as the support elements of K. The subset Nor K ⊂ Σ is compact.
For K ∈ K and a face F of K let N(K,F ) be the normal cone of K at F , i.e. the convex cone

N(K,x) := {u ∈ Rn : 〈u, x〉 ≥ 〈u, y〉 for all y ∈ K} ,

where x is an arbitrary point from the relative interior of F .
For ε > 0, K ∈ K\{∅} and η ∈ B(Σ) (where B(X) denotes the σ-algebra of all Borel subsets of

a topological space X) let

Mε(K, η) := {x ∈ Rn : 0 < d(K,x) ≤ ε, (p(K,x), u(K,x)) ∈ η}

be the local parallel set and let µε(K, η) := λn(Mε(K, η)), where λn is Lebesgue measure on B(Rn).
According to the Steiner formula µε(K, η) is a polynomial in ε,

µε(K, η) =
1
n

n−1∑
j=0

εn−j

(
n

j

)
Θj(K, η) , (1)

cf. Schneider [5], Theorem 4.2.1. The measures Θj(K, ·) on B(Σ) defined by the coefficients are the
generalized curvature measures of K, which we will briefly call support measures of K. In addition
we define Θj(∅, ·) := 0 and µε(∅, ·) := 0. We will mainly work with the renormalized measures
Λj(K, ·), defined by

nκn−jΛj(K, ·) =
(
n

j

)
Θj(K, ·) ,

where κn−j is the volume of the (n−j)-dimensional unit ball. We also refer to the measures Λj(K, ·)
as the support measures of K.

An easy computation of µε(P, η) for P ∈ P gives

Λj(P, η) =
1

(n− j)κn−j

∑
F∈Fj(P )

∫
F

∫
N(P,F )∩Sn−1

1η(x, u) dλj(x)dλn−j−1(u) , (2)

where Fj(P ) is the set of all j-faces of P , 1η is the indicator function of the set η ∈ B(Σ) and λj is
j-dimensional Hausdorff measure.

If we choose ε = 1, . . . , n in the Steiner formula, we can solve the resulting system of linear
equations and get the representations

Λj(K, ·) =
n∑

k=1

bjkµk(K, ·) (3)

for all K ∈ K with certain real constants bjk.
By the specialization Φj(K,A) := Λj(K,A× Sn−1), A ∈ B(Rn), we get the curvature measures

Φj(K, ·) of Federer, and Sj(K,ω) := Θj(K,Rn × ω), ω ∈ B(Sn−1), defines the area measures of
Aleksandrov and Fenchel–Jessen. The global measures Vj(K) := Λj(K,Σ) are the intrinsic volumes
of K. For the most important properties of the functionals Θj , Φj , Sj , and Vj we refer to Schneider
[5], Section 4.2. We would like to point out one additional property of the measures Λj(K, ·): The
functional Λj is locally determined, i.e. for K,K ′ ∈ K and η ∈ B(Σ) with η ∩ Nor K = η ∩ Nor K ′

we have Λj(K, η) = Λj(K ′, η). This follows from (3) and the fact that also the measures µε(K, ·)
are locally determined.
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The convex ringR is the set of all finite unions of convex bodies. There exist uniquely determined
additive extensions of the support measures Λj to R, i.e. the extended functionals (again denoted
by Λj) have the valuation property

Λj(K ∩K ′, ·) + Λj(K ∪K ′, ·) = Λj(K, ·) + Λj(K ′, ·)

for all K,K ′ ∈ R. For a construction of these extensions see, e.g., Schneider [5], Section 4.4. If
K ∈ R is represented as a union of the convex bodies K1, . . . ,Km, then the inclusion-exclusion
principle tells us that

Λj(K, ·) =
∑

v∈S(m)

(−1)|v|−1Λj(Kv, ·) . (4)

Here S(m) is the set of all non-empty subsets of {1, . . . ,m}, and for v ∈ S(m) we denote by |v| the
cardinality of v and define Kv := ∩i∈vKi.

Let Gn and SOn be the groups of all proper rigid motions and proper rotations of Rn, re-
spectively, topologized as usual. Let µ and ν be the Haar measures on Gn and SOn, normali-
zed by µ({g ∈ Gn : g(o) ∈ Bn}) = κn and ν(SOn) = 1, respectively. We let En

q denote the
set of all affine q-dimensional subspaces of Rn, q ∈ {0, . . . , n}, again equipped with the usual
topology. We denote the Haar measure of the homogeneous Gn-space En

q by µq, normalized by
µq({E ∈ En

q : E ∩Bn 6= ∅}) = κn−q.
We now cite the principal kinematic formula and the Crofton formula in the versions for curva-

ture measures of convex bodies. We use the constants αnjk defined by

αnjk :=

(
k
j

)
κkκn+j−k(
n

k−j

)
κjκn

=
Γ
(

k+1
2

)
Γ
(

n+j−k+1
2

)
Γ
(

j+1
2

)
Γ
(

n+1
2

) . (5)

Elementary proofs of the following two theorems, which are special cases of results of Federer, can
be found, e.g., in [5], Section 4.5.

Theorem 1.1. Let K,K ′ ∈ K, A ∈ B(bd K) and B ∈ B(bd K ′). Then for j ∈ {0, . . . , n − 2}, we
have ∫

Gn

Φj(K ∩ gK ′, A ∩ gB) dµ(g) =
n−1∑

k=j+1

αnjkΦk(K,A)Φn+j−k(K ′, B) .

Theorem 1.2. Let K ∈ K and A ∈ B(bd K). Then for q ∈ {1, . . . , n − 1} and j ∈ {0, . . . , q − 1},
we have ∫

En
q

Φj(K ∩ E,A ∩ E) dµq(E) = αnjqΦn+j−q(K,A) .

We remark that the slightly more general variants treated in [5], where arbitrary A,B ∈ B(Rn)
are admitted, can easily be deduced from the above assertions with the help of the Fubini theorem.

In our proofs of generalizations of Theorems 1.1 and 1.2 we use the following simple characteri-
zation result for the support measures of polytopes. Its proof is short and elementary, and a special
feature lies in the fact that the functional under consideration is not postulated to be a valuation.
In another context, characterization of the support measures was investigated by Zähle [8].
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Lemma 1.3. Let ψ : P × B(Σ) → R be a map satisfying the following properties:

(a) ψ(P, ·) is a (finite) signed measure for all P ∈ P.

(b) We have ψ(gP, gη) = ψ(P, η) for all P ∈ P, η ∈ B(Σ) and g ∈ Gn, where gη := {(gx, g0u) ∈
Σ : (x, u) ∈ η} (here g0 ∈ SOn is the rotational part of g).

(c) For η ∈ B(Σ) and P, P ′ ∈ P with η ∩Nor P = η ∩Nor P ′ we have ψ(P, η) = ψ(P ′, η).

Then there are real numbers c0, . . . , cn−1 such that for all P ∈ P

ψ(P, ·) =
n−1∑
j=0

cjΛj(P, ·) .

Proof: To start with we show ψ(∅, ·) ≡ 0. We define a finite signed measure ρ by ρ(A) :=
ψ(∅, A×Sn−1), A ∈ B(Rn). From (b) we know that ρ is translation invariant, therefore it must be a
multiple of Lebesgue measure. But since ρ is finite, the factor involved must be 0. Thus ψ(∅, ·) ≡ 0.

We now deduce from (c) that ψ(P, ·) is concentrated on Nor P for all P ∈ P.
Now let P ∈ P\{∅}, j ∈ {0, . . . ,dimP} and F ∈ Fj(P ). An easy argument using (a), (b), (c)

and the fact that Lebesgue measure and spherical Lebesgue measure can be characterized by their
invariance properties yields

ψ(P,A×B) = bjλ
j(A)λn−j−1(B)

for every A ∈ B(relint F ), B ∈ B(N(P, F ) ∩ Sn−1) with a real constant bj depending only on j.
Since we have shown that ψ(P, ·) is concentrated on Nor P and since Nor P is the disjoint union of
the sets (relint F )×N(P, F ), F ∈ F(P ), we get from equation (2)

Ψ(P,A×B) =
n−1∑
j=0

bj
∑

F∈Fj(P )

λj(F ∩A)λn−j−1(N(P, F ) ∩B)

=
n−1∑
j=0

cjΛj(P,A×B)

for all A ∈ B(Rn), B ∈ B(Sn−1), where cj is defined by (n− j)κn−jbj . In the usual way we derive

ψ(P, η) =
n−1∑
j=0

cjΛj(P, η)

for every η ∈ B(Σ): The set of all η ∈ B(Σ) satisfying this equation is a Dynkin system, which
contains all sets of the form A×B with A ∈ B(Rn), B ∈ B(Sn−1); thus it must coincide with B(Σ).

2 A problem concerning the boundary structure

of convex bodies

Our proofs of the principal kinematic formula and the Crofton formula for support measures use a
certain assertion about the boundary structure of convex bodies in an essential way. Unfortunately
we could prove this easy-to-state assertion only in some special cases, so that we can merely formulate
it as a conjecture.



INTERSECTION FORMULAE OF INTEGRAL GEOMETRY 5

Conjecture Let K,K ′ ∈ K be convex bodies. Then for µ-a.e. g ∈ Gn, we have

lin N(K,x) ∩ lin N(gK ′, x) = {o}

for all x ∈ bd K ∩ bd gK ′.

In favour of this conjecture we can state that it is true if one of the two bodies is a polytope,
that it is correct in dimensions two and three and that the corresponding assertion in spherical space
is true in all dimensions (for this result we refer to [1], p. 78).

It is not difficult to see that the assertion is true for n = 2. In the case n = 3 we can argue as
follows. Let (x, L) ∈ Rn × Ln

q , (x′, L′) ∈ Rn × Ln
r with q, r ∈ {1, . . . , n − 1}. The set of all motions

g ∈ Gn with x = gx′ and dim(L ∩ g0L′) ≥ 1, where g0 ∈ SOn is the rotational part of g, is a
compact m-dimensional submanifold of Gn, where m = min{n(n− 1)/2, n(n− 1)/2+ q+ r−n− 1}.
In the case n = 3 it is not difficult to show that the set {(x, L) ∈ Rn × Ln

q : lin N(K,x) = L} can
be written as a union of sets Ai, i ∈ N, such that each Ai can be covered, for all sufficiently small
ε > 0, by at most ciε−(n−q) subsets of Rn ×Ln

q of diameter ε (here the numbers ci are independent
of ε, and the term “diameter” refers to the product metric on Rn × Ln

q , where the metric on Ln
q is

induced by a rotation invariant Riemannian metric). The methods used in Schneider [5], pp. 90 -
93, then show that the set

{g ∈ Gn : there is an x ∈ bd K ∩ bd gK ′ with L := lin N(K,x) ∈ Ln
q ,

L′ := lin N(gK ′, x) ∈ Ln
r and dim(L ∩ L′) ≥ 1}

has σ-finite Hausdorff measure of dimension (n−q)+(n−r)+(n(n−1)/2+q+r−n−1) = n(n+1)/2−1.
Since Gn has Hausdorff dimension n(n+1)/2, our conjecture is true for n = 3. (Before this argument
was found, a different proof for the case n = 3 was communicated to me by Rolf Schneider, see the
proof of Satz 8.3.2 in [1].)

This argument can be extended to general dimensions if the following question has a positive
answer. For q ∈ {1, . . . , n − 2}, let x0, . . . , xq ∈ Rn be affinely independent, let L be the (n − q)-
dimensional linear subspace orthogonal to aff {x0, . . . , xq}, let Ei := L+xi ∈ En

n−q, let ∅ 6= Ki ⊂ Ei

be convex bodies (which may be (n− q)-dimensional parallel bodies of some given convex bodies in
the flats Ei), and let K := conv (K0 ∪ · · · ∪Kq). Define

A :=
{

aff (H ∩K) ∈ En
q : H is a support hyperplane of K, card(H ∩Ki) = 1 ∀i

}
.

Equip the space En
q with a metric which is induced by a motion invariant Riemannian metric. Then

our question is as follows. Can A be covered, for all sufficiently small ε > 0, by at most c ε−(n−q−1)

subsets of En
q of diameter ε, where c is independent of ε ?

In this article we give a proof of our conjecture for the case that one of the bodies is a polytope.
This proof uses a deeper result of Zalgaller [9].

Theorem 2.1. The conjecture is true if one of the convex bodies K,K ′ is a polytope.

Theorem 2.1 is a consequence of the following result, which we want to state as a theorem as
well. Here we denote by E⊥ the linear subspace totally orthogonal to the affine subspace E.

Theorem 2.2. Let K ∈ K and let q ∈ {0, . . . , n− 1}. Then for µq-a.e. E ∈ En
q , we have

E⊥ ∩ lin N(K,x) = {o}

for all x ∈ E ∩ bd K.

The proofs of Theorems 2.1 and 2.2 will be given in Section 4.
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3 Intersection formulae for support measures

In order to generalize the principal kinematic formula from curvature measures to support measures,
we have to define a law of composition between two subsets of Σ which is adapted for the intersection
of two convex bodies. The natural definition of such a law of composition seems to be the following:
For η, η′ ⊂ Σ we let

η ∧ η′ :=
{
(x, u) ∈ Σ : there are u1, u2 ∈ Sn−1 with

(x, u1) ∈ η, (x, u2) ∈ η′, u ∈ pos {u1, u2}
}
,

where pos {u1, u2} := {λ1u1 + λ2u2 : λ1, λ2 ≥ 0} is the positive hull of the set {u1, u2}.
In the following it is necessary to assume that the support measures are complete measures (we

do not introduce new symbols for the completions).
In the case of the principal kinematic formula we have to impose restrictions on the convex bodies

under consideration, since the general conjecture formulated in the last section remains open. We
call a pair K,K ′ of convex bodies admissible, if this conjecture is true for these two bodies.

Our principal kinematic formula for support measures can now be stated as follows. Note that
the constants αnjk have been defined by (5). For a more satisfactory analogue in spherical space,
see [1], Satz 6.1.1, or [2], Theorem 9.

Theorem 3.1. Let K,K ′ ∈ K be an admissible pair of convex bodies, and let η ∈ B(Nor K), η′ ∈
B(Nor K ′). Then∫

Gn

Λj(K ∩ gK ′, η ∧ gη′) dµ(g) =
n−1∑

k=j+1

αnjkΛk(K, η)Λn+j−k(K ′, η′)

for j ∈ {0, . . . , n− 2}.

If K,K ′ ∈ K are convex bodies which do not touch each other and A,B are Borel subsets of
bd K, bd K ′, respectively, then it is easy to see that

Nor (K ∩K ′) ∩
(
(A ∩B)× Sn−1

)
=

(
Nor K ∩ (A× Sn−1)

)
∧

(
Nor K ′ ∩ (B × Sn−1)

)
.

Since K and gK ′ do not touch each other for µ-a.e. g ∈ Gn (see, e.g., [6], Hilfssatz 2.1.4), in the
case η = Nor K ∩ (A× Sn−1), η′ = Nor K ′ ∩ (B × Sn−1) Theorem 3.1 thus reduces, for admissible
K,K ′ ∈ K, to the principal kinematic formula for curvature measures.

The following generalization of Theorem 1.2 can be proved without any restrictions imposed on
the convex bodies under consideration. The appropriate law of composition between a subset of Σ
and an affine subspace is defined as follows: For η ⊂ Σ and E ∈ En

q , q ∈ {1, . . . , n− 1}, we let

η ∧ E :=
{
(x, u) ∈ Σ : there are u1, u2 ∈ Sn−1 with

(x, u1) ∈ η, x ∈ E, u2 ∈ E⊥, u ∈ pos {u1, u2}
}
,

where E⊥ ∈ Ln
n−q is the linear subspace orthogonal to E.

Theorem 3.2. Let K ∈ K and q ∈ {1, . . . , n− 1}. Then for every η ∈ B(Nor K) we have∫
En

q

Λj(K ∩ E, η ∧ E) dµq(E) = αnjqΛn+j−q(K, η)

for all j ∈ {0, . . . , q − 1}.
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Remark 1: It was indicated in [1], p. 111, how Theorem 3.2 for q = 2 and j = 0, 1 can be used
to show that the formula of Theorem 3.1 is true in the case j = n − 2 for arbitrary convex bodies
K,K ′.

Remark 2: We note that in the case j = 0 Theorem 3.2 yields a new intuitive interpretation of
the support measures, since it is a known fact that

Θ0(K, η) = nκnΛ0(K, η) = λn−1({u ∈ Sn−1 : (x, u) ∈ η ∩Nor K for an x ∈ bd K})

for all K ∈ K and η ∈ B(Σ), see Schneider [4], p. 120, (4.5). In particular we have

Sq(K,ω) =
1
κq

∫
En

n−q

Θ0(K ∩ E, (Nor K ∩ (Rn × ω)) ∧ E) dµn−q(E) (6)

for all Borel sets ω ⊂ Sn−1 and all q ∈ {1, . . . , n − 1}, which gives a new integral geometric
interpretation of the area measures.

The validity of Theorems 3.1 and 3.2 can be extended from convex bodies to elements of the
convex ring. In order to formulate these results it is necessary to define the set Nor K of all support
elements also for sets K of the convex ring R. It is possible to give an adequate definition with
the help of the index function treated by Schneider [5], Section 4.4, but we prefer to give a simple
definition which does not require additional concepts. If K ∈ R is an element of the convex ring, let
I(K) be the set of all sequences (Ki)i∈N in K with K = ∪∞i=1Ki and Ki = ∅ for almost all i ∈ N.
Let further S(N) be the set of all non-empty subsets of N. We now define

Nor K :=
⋂

(Ki)∈I(K)

⋃
v∈S(N)

Nor (∩i∈vKi) .

For K ∈ K this is obviously consistent with the previous definition. The set Nor K is compact for
all K ∈ R.

Since we were not able to prove the conjecture of Section 2 in its full generality, we can show
the principal kinematic formula for support measures of sets of the convex ring only in a restricted
version. We call a pair K,K ′ ∈ R admissible, if there are representations K = K1 ∪ · · · ∪ Km,
K ′ = K ′

1 ∪ · · · ∪ K ′
m′ with K1, . . . ,Km, K ′

1, . . . ,K
′
m′ ∈ K such that for every v ∈ S(v) and every

v′ ∈ S(m′) the pair Kv,K
′
v′ of convex bodies is admissible in the sense introduced above.

We can now state our results as follows.

Theorem 3.3. Theorem 3.1 remains true if the pair K,K ′ is replaced by an admissible pair of
elements of the convex ring R.

Theorem 3.4. Theorem 3.2 is valid also for sets K ∈ R.

The results of this section will be proved in Section 5.

4 Proofs of the results stated in Section 2

Proof of Theorem 2.2: Let K ∈ K and q ∈ {0, . . . , n− 1}. We say that a flat E ∈ En
q is in K-general

position, if E⊥ ∩ lin N(K,x) = {o} for every x ∈ E ∩ bd K. Let A be the set of all E ∈ En
q which

are not in K-general position. A is contained in B(En
q ) since A = ∪∞m=1Am with

Am := {E ∈ En
q : there are x ∈ E ∩ bd K,u1, u2 ∈ N(K,x) ∩ Sn−1 and λ1, λ2 ∈ R

with |λ1|, |λ2| ≤ m and λ1u1 + λ2u2 ∈ E⊥ ∩ Sn−1}
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and each Am is closed (I thank Professor Rolf Schneider for pointing this out to me).
We denote the set of all linear subspaces of dimension q by Ln

q and the rotation invariant
probability measure on B(Ln

q ) by νq. If f : En
q → R is a nonnegative Borel measurable funtion, we

have ∫
En

q

f dµq =
∫
Ln

q

∫
L⊥

f(L+ x) dλL⊥(x)dνq(L) ,

where λL⊥ is (n− q)-dimensional Lebesgue measure in the subspace L⊥ ∈ Ln
n−q.

At first we assume o ∈ int K and show νq(A ∩ Ln
q ) = 0. Let L ∈ A ∩ Ln

q . Then there exists an
x ∈ L ∩ bd K with dim(L⊥ ∩N(K,x)) ≥ 1. Thus there are v1, . . . , vn ∈ N(K,x) and real numbers
λ1, . . . , λn with

∑n
i=1 λivi ∈ L⊥\{o}. Let w1 be the sum of all λivi with λi > 0 and let −w2 be the

sum of all λivi with λi < 0. Then w1, w2 define a segment in N(K,x) which is parallel to L⊥. Let
H be the supporting hyperplane of the polar body

K∗ := {y ∈ Rn : 〈y, z〉 ≤ 1 for all z ∈ K}

of K at its outer normal vector x and let F := H ∩K∗ be the corresponding support set. We have
y ∈ F if and only if 〈x, y〉 = max{〈y, z〉 : z ∈ K} = 1. Therefore F = H ∩ N(K,x). Let λ > 0
with λw1 ∈ F . Since L⊥ is parallel to H we have λw2 ∈ F . Thus λw1, λw2 define a segment in the
boundary of K∗ which is parallel to L⊥. According to a result of Zalgaller [9] (cf. the formulation
in [5], pp. 93 - 94) the set of all L ∈ Ln

q for which there is a segment in the boundary of K∗ that is
parallel to L⊥ has νq-measure zero. Hence νq-almost all L ∈ Ln

q are in K-general position.
Now let K be an arbitrary convex body with non-empty interior. Let B0 := {E ∈ En

q : E touches
K} and Bm := {E ∈ En

q : E ∈ A\B0, Vq(K ∩ E) ≥ 1/m} for m ∈ N. The set B0 is closed, and the
sets Bm, m ≥ 1, are Borel sets since the map E 7→ Vq(K ∩E) is continuous on En

q \B0 (this follows
from [5], Theorem 1.8.8, and the continuity of the volume functional). We have A = ∪∞m=0Bm, and
it is easy to see that µq(B0) = 0. For m ≥ 1 we deduce from the Fubini theorem

µq(Bm) =
∫
Ln

q

∫
L⊥

1Bm(L+ y) dλL⊥(y)dνq(L)

=
∫
Ln

q

∫
{y∈L⊥:L+y∈Bm}

Vq(K ∩ (L+ y))−1

∫
L

1K(y + z) dλL(z)dλL⊥(y)dνq(L)

≤ m

∫
Ln

q

∫
L⊥

∫
L

1Bm
(L+ y + z)1K(y + z) dλL(z)dλL⊥(y)dνq(L)

= m

∫
K

∫
Ln

q

1Bm
(L+ x) dνq(L)dλn(x) .

It follows from what we have shown above that∫
Ln

q

1Bm
(L+ x) dνq(L) = 0

for all x ∈ int K. Thus we deduce µq(Bm) = 0 and therefore µq(A) = 0.
Finally let r := dimK < n. If q + r ≤ n − 1, then K ∩ E = ∅ for µq-almost all E ∈ En

q and
our assertion is trivial. Let q + r ≥ n and let F := aff K ∈ En

r . It follows from [5], Lemma 4.5.1,
that E⊥ ∩ F⊥ = {o} for µq-almost all E ∈ En

q . For E ∈ En
q with E⊥ ∩ F⊥ = {o} the flat E is in



INTERSECTION FORMULAE OF INTEGRAL GEOMETRY 9

K-general position if and only if the (q + r − n)-dimensional flat E ∩ F is in K-general position in
the subspace F (this follows from the easily verified equivalence

(E ∩ F )⊥ ∩ L = {o} ⇐⇒ E⊥ ∩ lin (F⊥ ∪ L) = {o}

for linear subspaces L with L+x ⊂ F for x ∈ F ). The map f : {E ∈ En
q : E⊥∩F⊥ = {o}} → En

q+r−n,
E 7→ E ∩ F , is continuous. The image of the restriction of µq under f is invariant with respect to
motions which fix F , it is finite on compact sets, and it does not vanish identically. The range
of f can be identified with Er

q+r−n. Since the Haar measures on Er
q+r−n differ only by constant

positive factors (for a simple proof, see [6], Satz 1.3.4), this image measure must coincide, up to a
constant positive factor, with the measure µq+r−n on Er

q+r−n. Now it follows from our treatment of
n-dimensional convex bodies that µq(A) = 0.

Proof of Theorem 2.1: Let K ∈ K and P ∈ P. We have lin N(K,x) ∩ lin N(P, x) = {o} for all
x ∈ bd K ∩ bd P if the affine hull of every face of P is in K-general position. Thus it is sufficient to
show that for every E ∈ En

q , q ∈ {0, . . . , n− 1}, for µ-almost all g ∈ Gn the flat gE is in K-general
position. Let again A be the set of all q-flats which are not in K-general position. We have

µ({g ∈ Gn : gE ∈ A})

=
∫

SOn

∫
Rn

1A(ρ(E + x)) dλn(x)dν(ρ)

=
∫
E

∫
SOn

∫
E⊥

1A(ρ(E + x)) dλE⊥
(x)dν(ρ)dλE(y)

=
∫
E

∫
Ln

q

∫
L⊥

1A(L+ x) dλL⊥(x)dνq(L)dλE(y)

=
∫
E

µq(A) dλE(y) = 0 ,

since µq(A) = 0 by Theorem 2.2.

5 Proofs of the results stated in Section 3

We are now going to prove Theorem 3.1 with the help of a sequence of lemmas. The proof of Theorem
3.2, which relies heavily on Theorem 2.2, can be given along the same lines (alternatively one could
deduce Theorem 3.2 from Theorems 3.1 and 2.1, see [1], pp. 122 - 124). For this reason we omit the
proof of Theorem 3.2.

In the following we use the abbreviations [u1, u2] := pos {u1, u2} ∩ Sn−1 and ]u1, u2[ :=
[u1, u2]\{u1, u2} for u1, u2 ∈ Sn−1.

If K,K ′ ∈ K is an admissible pair of convex bodies and gK ′ is a congruent copy of K ′, we say
that K and gK ′ are in general relative position, if lin N(K,x) ∩ lin N(gK ′, x) = {o} for all x ∈
bd K∩bd gK ′. In the proofs of the subsequent lemmas we often use the following fact. If K,K ′ ∈ K
are in general relative position and if (x, u) ∈ Nor K ∧ Nor K ′ but (x, u) /∈ Nor K ∪ Nor K ′,
then there are uniquely determined u1, u2 ∈ Sn−1 with (x, u1) ∈ Nor K, (x, u2) ∈ Nor K ′ and
u ∈ ]u1, u2[. Indeed, since lin N(K,x) ∩ lin N(K ′, x) = {o} we have u = v1 + v2 with uniquely
determined v1 ∈ N(K,x), v2 ∈ N(K ′, x), v1, v2 6= o, and ui = vi/‖vi‖, i = 1, 2.
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For the purpose of the proof of Theorem 3.1, we introduce a second law of composition between
two subsets of Σ. For η, η′ ⊂ Σ we define

η u η′ :=
{
(x, u) ∈ Σ : there are u1, u2 ∈ Sn−1 with

(x, u1) ∈ η, (x, u2) ∈ η′, u ∈ ]u1, u2[
}
.

We work with the measures µε(K, ·), the local parallel volumes as defined in Section 1. If not stated
otherwise we always assume that K,K ′ is an admissible pair of convex bodies. Let ε > 0.

Lemma 5.1. Let η ∈ B(Nor K), η′ ∈ B(Nor K ′). Then for µ-a.e. g ∈ Gn we have η u gη′ ∈ B(Σ).
For g ∈ Gn there is a set Bg ∈ B(Σ) with (η ∧ gη′)\(η u gη′) ⊂ Bg such that µε(K ∩ gK ′, Bg) = 0
for µ-a.e. g ∈ Gn.

Proof: Let g ∈ Gn such that K and gK ′ are in general relative position. If (x, u) ∈ X :=
(Nor K ∧Nor gK ′)\(Nor K ∪Nor gK ′), then, as mentioned above, there exist uniquely determined
u1, u2 ∈ Sn−1 with (x, u1) ∈ Nor K, (x, u2) ∈ Nor gK ′ and u ∈ ]u1, u2[. For i ∈ {1, 2} we let

πi : X → Σ, (x, u) 7→ (x, ui),

so u1, u2 ∈ Sn−1 are determined by (x, u1) ∈ Nor K, (x, u2) ∈ Nor gK ′ and u ∈ ]u1, u2[. The maps
π1, π2 are continuous: If (xj , uj)j∈N is a sequence in X with limj→∞(xj , uj) = (x, u) ∈ X, such that
(xj , vj) := π1(xj , uj) does not converge to (x, v0) := π1(x, u), then there is an increasing sequence
(ij)j∈N in N with (vij

)j∈N converging to a v ∈ Sn−1 with v 6= v0. Let w be an accumulation point
of the sequence (wij

)j∈N, where (xj , wj) := π2(xj , uj). Because of (x, v) ∈ Nor K, (x,w) ∈ Nor gK ′

we have u ∈ ]v, w[ and therefore π1(x, u) = (x, v) 6= (x, v0) = π1(x, u). This contradiction shows the
continuity of π1, and the same argument yields the continuity of π2.

We have η u gη′ = π−1
1 (η) ∩ π−1

2 (gη′): If (x, u) ∈ η u gη′, then there exist u1, u2 ∈ Sn−1

with (x, u1) ∈ η, (x, u2) ∈ gη′ and u ∈ ]u1, u2[. Since K, gK ′ are in general relative position, we
have (x, u) /∈ Nor K ∪ Nor gK ′ and hence (x, u) ∈ π−1

1 (η) ∩ π−1
2 (gη′). For the reverse inclusion

let (x, u) ∈ π−1
1 (η) ∩ π−1

2 (gη′). Then on the one hand there exist v1, v2 ∈ Sn−1 with (x, v1) ∈ η,
(x, v2) ∈ Nor gK ′ and u ∈ ]v1, v2[, on the other hand w1, w2 ∈ Sn−1 with (x,w1) ∈ Nor K,
(x,w2) ∈ gη′ and u ∈ ]w1, w2[. Because of lin N(K,x) ∩ lin N(gK ′, x) = {o} it follows v1 = w1,
v2 = w2 and therefore (x, u) ∈ η u gη′.

Because of X ∈ B(Σ) it now follows that η u gη′ ∈ B(X) ⊂ B(Σ).
Now let g ∈ Gn be arbitrary. The set

Bg := (Nor K ∪Nor gK ′) ∩ ((bd K ∩ bd gK ′)× Sn−1) ∈ B(Σ)

obviously satifies
(η ∧ gη′)\(η u gη′) ⊂ Bg .

Furthermore we have for the local parallel sets

Mε(K ∩ gK ′, Bg) = Mε(K,bd gK ′ × Sn−1) ∪ Mε(gK ′,bd K × Sn−1)

and therefore ∫
Gn

µε(K ∩ gK ′, Bg) dµ(g)

≤
∫

Gn

(
µε(K,bd gK ′ × Sn−1) + µε(gK ′,bd K × Sn−1)

)
dµ(g) .
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An application of the Fubini theorem gives (see, e.g., [6], Satz 1.2.7)∫
Gn

µε(K,bd gK ′ × Sn−1) dµ(g)

=
∫

SOn

∫
Rn

µε(K, (bd ϑK ′ + t)× Sn−1) dλn(t)dν(ϑ)

= µε(K,Σ)
∫

SOn

λn(bd ϑK ′) dν(ϑ) = 0

and similarly
∫

Gn
µε(gK ′,bd K × Sn−1)dµ(g) = 0. It follows∫

Gn

µε(K ∩ gK ′, Bg) dµ(g) = 0

and therefore µε(K ∩ gK ′, Bg) = 0 for µ-a.e. g ∈ Gn, as asserted.

Now it is clear that under the above assumptions the set η ∧ gη′ is µε(K ∩ gK ′, ·)-measurable
for µ-almost all g ∈ Gn. In the following we assume that the measures µε(K ∩ gK ′, ·) are complete.
As a consequence of Lemma 5.1 we have

µε(K ∩ gK ′, η ∧ gη′) = µε(K ∩ gK ′, η u gη′)

for µ-almost all g ∈ Gn.

Lemma 5.2. Let η′ ∈ B(Nor K ′). Then for µ-a.e. g ∈ Gn, the map

B(Nor K) → R , η 7→ µε(K ∩ gK ′, η ∧ gη′) ,

is a finite measure.

Proof: Let g ∈ Gn such that K and gK ′ are in general relative position. Let x ∈ bd K ∩bd gK ′.
Because of lin N(K,x)∩ lin N(gK ′, x) = {o} we have for all A,B ⊂ N(K,x)∩Sn−1 with A∩B = ∅
and all C ⊂ N(gK ′, x) ∩ Sn−1(

({x} ×A) u ({x} × C)
)
∩

(
({x} ×B) u ({x} × C)

)
= ∅ .

From this it follows generally
(η1 u gη′) ∩ (η2 u gη′) = ∅

for all η1, η2 ⊂ Nor K, η1 ∩ η2 = ∅, and η′ ⊂ Nor K ′. Since µε(K ∩ gK ′, ·) is a finite measure, the
assertion follows from Lemma 5.1.

Lemma 5.3. If (Ki)i∈N is a sequence in K with limi→∞Ki = K such that the pair Ki,K
′ is

admissible for all i ∈ N, then for µ-a.e. g ∈ Gn

lim inf
i→∞

µε

(
Ki ∩ gK ′, (η ∩Nor Ki) ∧ g(η′ ∩Nor K ′)

)
≥ µε

(
K ∩ gK ′, (η ∩Nor K) ∧ g(η′ ∩Nor K ′)

)
for all open sets η, η′ ⊂ Σ and

lim
i→∞

µε

(
Ki ∩ gK ′,Nor Ki ∧Nor gK ′) = µε

(
K ∩ gK ′,Nor K ∧Nor gK ′) .
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Proof: Let η and η′ be open subsets of Σ. For µ-a.e. g ∈ Gn both K, gK ′ and Ki, gK
′ for

all i ∈ N are in general relative position. In the following g is an arbitrary motion having this
property. The assertion is trivial if K ∩ gK ′ = ∅. So let us assume K ∩ gK ′ 6= ∅. The bodies K, gK ′

do not touch each other (otherwise they were not in general relative position), therefore we have
limi→∞(Ki ∩ gK ′) = K ∩ gK ′ according to Theorem 1.8.8 in [5]. We show that for all δ ∈ (0, ε) the
inclusion

Mδ

(
K ∩ gK ′, (η ∩Nor K) u g(η′ ∩Nor K ′)

)
⊂ lim inf

i→∞
Mε

(
Ki ∩ gK ′, (η ∩Nor Ki) u g(η′ ∩Nor K ′)

)
holds (as shown in the proof of Lemma 5.1 both (η ∩ Nor K) u g(η′ ∩ Nor K ′) and (η ∩ Nor Ki) u
g(η′ ∩Nor K ′) are Borel sets).

Assume x ∈Mε(K ∩ gK ′, (η ∩Nor K) u g(η′ ∩Nor K ′)) with d(K ∩ gK ′, x) < ε. For almost all
i ∈ N we have 0 < d(Ki∩gK ′, x) < ε. For these i we define ui := u(Ki∩gK ′, x), pi := p(Ki∩gK ′, x),
and we put u := u(K ∩ gK ′, x), p := p(K ∩ gK ′, x). We have ui → u, pi → p for i → ∞.
Since K and gK ′ are in general relative position, there are uniquely determined v, w ∈ Sn−1 such
that (p, v) ∈ η ∩ Nor K, (p, w) ∈ g(η′ ∩ Nor K ′) and u ∈ ]v, w[. We have pi ∈ bd Ki ∩ bd gK ′

for almost all i, since otherwise (pi, ui) ∈ Nor Ki ∪ Nor gK ′ for infinitely many i and therefore
(p, u) ∈ Nor K ∪ Nor gK ′, hence u ∈ {v, w}. Since Ki and gK ′ do not touch each other we have
(pi, ui) ∈ Nor (Ki ∩ gK ′) ∩ ((bd Ki ∩ bd gK ′)× Sn−1) = Nor Ki ∧Nor gK ′ for almost all i, hence
for these i there are vi, wi ∈ Sn−1 with (pi, vi) ∈ Nor Ki, (pi, wi) ∈ Nor gK ′ and ui ∈ [vi, wi]. For
almost all i we even have ui /∈ {vi, wi}, since otherwise again u ∈ {v, w}. As K and gK ′ are in general
relative position, we can show the limit relations vi → v, wi → w for i→∞ in the same way as the
continuity of the maps π1, π2 defined in the proof of Lemma 5.1. Because of (p, v) ∈ η, (p, w) ∈ gη′
and since the sets η, gη′ ⊂ Σ are open, we have (pi, vi) ∈ η, (pi, wi) ∈ gη′ for almost all i, hence

x ∈ lim inf
i→∞

Mε(Ki ∩ gK ′, (η ∩Nor Ki) u g(η′ ∩Nor K ′)) ,

as asserted.
It follows that

µε

(
K ∩ gK ′, (η ∩Nor K) u g(η′ ∩Nor K ′)

)
= λn

(
Mε(K ∩ gK ′, (η ∩Nor K) u g(η′ ∩Nor K ′))

)
≤ λn

(
lim inf
i→∞

Mε(Ki ∩ gK ′, (η ∩Nor Ki) u g(η′ ∩Nor K ′))
)

≤ lim inf
i→∞

µε

(
Ki ∩ gK ′, (η ∩Nor Ki) u g(η′ ∩Nor K ′)

)
for µ-a.e. g, and an application of Lemma 5.1 gives the asserted inequality.

It is not difficult to show that the inclusion

lim sup
i→∞

Mε(Ki ∩ gK ′,Nor Ki ∧Nor gK ′) ⊂ Mε(K ∩ gK ′,Nor K ∧Nor gK ′)

∪ bd (K ∩ gK ′)

holds if g ∈ Gn is such that K and gK ′ do not touch each other. It follows on the one hand that for



INTERSECTION FORMULAE OF INTEGRAL GEOMETRY 13

these g

lim sup
i→∞

µε(Ki ∩ gK ′,Nor Ki ∧Nor gK ′)

= lim sup
i→∞

λn
(
Mε(Ki ∩ gK ′,Nor Ki ∧Nor gK ′)

)
≤ λn

(
lim sup

i→∞
Mε(Ki ∩ gK ′,Nor Ki ∧Nor gK ′)

)
≤ λn

(
Mε(K ∩ gK ′,Nor K ∧Nor gK ′)

)
= µε(K ∩ gK ′,Nor K ∧Nor gK ′) .

On the other hand from the inequality shown in the first part of this proof it follows

µε(K ∩ gK ′,Nor K ∧Nor gK ′) ≤ lim inf
i→∞

µε(Ki ∩ gK ′,Nor Ki ∧Nor gK ′)

for µ-a.e. g ∈ Gn. Now also the second assertion of Lemma 5.3 is established.

It is clear that results similar to Lemmas 5.2 and 5.3 are valid with the roles of the pairs (K, η)
and (K ′, η′) interchanged.

Lemma 5.4. For all η ∈ B(Nor K), η′ ∈ B(Nor K ′) the map g 7→ µε(K ∩ gK ′, η ∧ gη′) coincides
with a Borel measurable map µ-almost everywhere.

Proof: Let g ∈ Gn such that K and gK ′ are in general relative position, and let (gi)i∈N be a
sequence in Gn converging to g such that K and giK

′ are in general relative position for all i ∈ N.
If η ⊂ Nor K and η′ ⊂ Nor K ′ are open subsets, then for every δ ∈ (0, ε) the inclusion

Mδ(K ∩ gK ′, η u gη′) ⊂ lim inf
i→∞

Mε(K ∩ giK, η u giη
′)

can be proved as in the first part of the proof of Lemma 5.3. Hence

µε(K ∩ gK ′, η u gη′) ≤ lim inf
i→∞

µε(K ∩ giK
′, η u giη

′) .

Now from Lemma 5.1 it follows that the map g 7→ µε(K ∩ gK ′, η ∧ gη′) is well defined and lower
semicontinuous on a subset of Gn of full measure for all open η ⊂ Nor K and η′ ⊂ Nor K ′. Therefore
the assertion is true for such η, η′. It is easy to show with the help of Lemma 5.2 that for open
η′ ⊂ Nor K ′ the set of all η ∈ B(Nor K) for which the assertion is true is a Dynkin system. From
this the assertion follows for η ∈ B(Nor K) and open η′ ⊂ Nor K ′. In a second step one can show
the general assertion in an analogous manner.

Lemma 5.5. There exist real numbers akl, k, l ∈ {0, . . . , n− 1}, depending only on ε, such that∫
Gn

µε(K ∩ gK ′, η ∧ gη′) dµ(g) =
n−1∑
k,l=0

aklΛk(K, η)Λl(K ′, η′)

for all η ∈ B(Nor K), η′ ∈ B(Nor K ′).

Proof: Let P ∈ P and η ∈ B(Σ). The map

ψ : P × B(Σ) → R

(P ′, η′) 7→
∫

Gn

µε

(
P ∩ gP ′, (η ∩Nor P ) ∧ g(η′ ∩Nor P ′)

)
dµ(g) ,
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which is well defined because of Lemma 5.4 and Theorem 2.1, satisfies the assumptions of Lemma 1.3:
From Lemma 5.2 and the monotone convergence theorem it follows that the map ψ(P ′, ·) is a measure
for all P ′ ∈ P. The left invariance of µ implies ψ(gP ′, gη′) = ψ(P ′, η′) for all P ′ ∈ P, η′ ∈ B(Σ). For
all P ′1, P

′
2 ∈ P and all η′ ∈ B(Σ) with η′ ∩Nor P ′1 = η′ ∩Nor P ′2 we have

[(η ∩Nor P ) ∧ g(η′ ∩Nor P ′1)] ∩Nor (P ∩ gP ′1)
= [(η ∩Nor P ) ∧ g(η′ ∩Nor P ′1)] ∩Nor (P ∩ gP ′2)
= [(η ∩Nor P ) ∧ g(η′ ∩Nor P ′2)] ∩Nor (P ∩ gP ′2)

for all g ∈ Gn, and since µε is locally determined it follows ψ(P ′1, η
′) = ψ(P ′2, η

′). Hence there exist
numbers c0, . . . , cn−1 ∈ R, depending only on ε, P and η, such that∫

Gn

µε

(
P ∩ gP ′, (η ∩Nor P ) ∧ g(η′ ∩Nor P ′)

)
dµ(g) =

n−1∑
l=0

clΛl(P ′, η′) .

The same argument can be applied to show that the coefficients cl are linear combinations of the
support measures of P :

cl =
n−1∑
k=0

aklΛk(P, η) ,

where the real numbers akl depend only on ε. Lemma 5.5 is now proved for polytopes. It can be
extended to admissible pairs K,K ′ ∈ K in the same way as equation (4.5.19) on p. 247 in Schneider
[5] is extended from strictly convex bodies to general convex bodies. Beside Lemmas 5.2, 5.3, Fatou’s
lemma and the dominated convergence theorem we here use the fact that, according to Theorem
2.1, a pair of convex bodies is admissible if one of the bodies is a polytope.

Proof of Theorem 3.1: Let K,K ′ ∈ K be admissible and let η ∈ B(Nor K), η′ ∈ B(Nor K ′).
According to equation (3) there are constants bjk with∫

Gn

Λj(K ∩ gK ′, η ∧ gη′) dµ(g) =
n∑

k=1

bjk

∫
Gn

µk(K ∩ gK ′, η ∧ gη′) dµ(g) .

Now Lemma 5.5 shows that there are real constants cjkl satisfying∫
Gn

Λj(K ∩ gK ′, η ∧ gη′) dµ(g) =
n−1∑
k,l=0

cjklΛk(K, η)Λl(K ′, η′) .

In the case η = Nor K, η′ = Nor K ′, this equation must be compatible with Theorem 1.1, thus we
obtain for the constants cjkl = αnjk if l = n+ j − k and j + 1 ≤ k ≤ n− 1, and cjkl = 0 in all other
cases.

In order to extend our results to the convex ring we need the following lemma. We use the
notations introduced in connection with the inclusion-exclusion principle (4).

Lemma 5.6. Let K,K ′ ∈ R be an admissible pair, let K1, . . . ,Km, K ′
1, . . . ,K

′
m′ ∈ K with K =

∪m
i=1Ki, K ′ = ∪m′

i=1K
′
i such that Kv,K

′
v′ are admissible pairs of convex bodies for all v ∈ S(m), v′ ∈

S(m′). Let further η ∈ B(Nor K), η′ ∈ B(Nor K ′). Then for µ-a.e. g ∈ Gn we have

Λj(Kv ∩ gK ′
v′ , η ∧ gη′) = Λj(Kv ∩ gK ′

v′ , (η ∩Nor Kv) ∧ g(η′ ∩Nor K ′
v′))

for all j ∈ {0, . . . , n− 1} and all v ∈ S(m), v′ ∈ S(m′).
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Proof: Let v ∈ S(m), v′ ∈ S(m′). For g ∈ Gn we put

Bg := (Nor Kv ∪Nor gK ′
v′) ∩ ((bd Kv ∩ bd gK ′

v′)× Sn−1) .

As shown in the proof of Lemma 5.1 we have µε(Kv ∩ gK ′
v′ , Bg) = 0 for all ε > 0 for µ-a.e. g ∈ Gn

and therefore
Λj(Kv ∩ gK ′

v′ , Bg) = 0

for all j ∈ {0, . . . , n− 1} for µ-a.e. g. Now let η ∈ B(Nor K) and η′ ∈ B(Nor K ′). For all g ∈ Gn we
have

(η ∩Nor Kv) ∧ g(η′ ∩Nor K ′
v′) ⊂ (η ∧ gη′) ∩ (Nor Kv ∧Nor gK ′

v′) .

We show

((η ∧ gη′) ∩ (Nor Kv ∧Nor gK ′
v′))\Bg ⊂ (η ∩Nor Kv) ∧ g(η′ ∩Nor K ′

v′)

for all g ∈ Gn such that Kw and gK ′
w′ are in general relative position for all w ∈ S(m), w′ ∈ S(m′).

So let g ∈ Gn such that Kw and gK ′
w′ are in general relative position for all w ∈ S(m),

w′ ∈ S(m′), and let (x, u) ∈ ((η∧gη′)∩(Nor Kv∧Nor gK ′
v′))\Bg. Then (x, u) /∈ Nor Kv∪Nor gK ′

v′ .
According to the definition of “∧” there are u1, u2, v1, v2 ∈ Sn−1 with (x, u1) ∈ η, (x, u2) ∈ Nor Kv,
(x, v1) ∈ gη′, (x, v2) ∈ Nor gK ′

v′ and u ∈ [u1, v1]∩ [u2, v2]. We have u /∈ {u2, v2}. If we let w := {i ∈
{1, . . . ,m} : x ∈ Ki} ∈ S(m) and w′ := {i ∈ {1, . . . ,m′} : x ∈ gK ′

i} ∈ S(m′), then v ⊂ w and v′ ⊂ w′

and therefore (x, u2) ∈ Nor Kw, (x, v2) ∈ Nor gK ′
w′ . Because of the definition of the sets Nor K and

Nor K ′ it follows from η ⊂ Nor K, η′ ⊂ Nor K ′ that (x, u1) ∈ Nor Kw, (x, v1) ∈ Nor gK ′
w′ . Since

Kw and gK ′
w′ are in general relative position, we infer u1 = u2 and v1 = v2. Hence (x, u) is included

in (η ∩Nor Kv) ∧ g(η′ ∩Nor K ′
v′).

We now conclude that

Λj(Kv ∩ gK ′
v′ , (η ∩Nor Kv) ∧ g(η′ ∩Nor K ′

v′))
= Λj(Kv ∩ gK ′

v′ , (η ∧ gη′) ∩ (Nor Kv ∧Nor gK ′
v′))

for all j ∈ {0, . . . , n − 1} for µ-a.e. g ∈ Gn. If Kv and gK ′
v′ do not touch each other we have

Nor Kv ∧ Nor gK ′
v′ = Nor (Kv ∩ gK ′

v′) ∩ ((bd Kv ∩ bd gK ′
v′) × Sn−1). Since Λj(Kv ∩ gK ′

v′ , ·) is
concentrated on Nor (Kv ∩ gK ′

v′), the proof is finished if from (x, u) ∈ (η ∧ gη′) ∩Nor (Kv ∩ gK ′
v′)

it follows that x ∈ bd Kv ∩ bd gK ′
v′ . We finally want to show this implication.

Let (x, u) ∈ (η∧gη′)∩Nor (Kv∩gK ′
v′). Then x ∈ Kv, and there is a ū ∈ Sn−1 with (x, ū) ∈ η ⊂

Nor K. We assume x ∈ int Kv. Then a fortiori x ∈ int K. We can choose a polytope P0 ∈ P with
x ∈ int P0 and P0 ⊂ K, and polytopes P1, . . . , Pk ∈ P with K ⊂ ∪k

i=0Pi and Pi ∩ int P0 = ∅ for all
i ∈ {1, . . . , k}. We define Kij := Pi ∩Kj for i ∈ {1, . . . , k}, j ∈ {1, . . . ,m}. If we arrange the bodies
P0 and Kij in a finite sequence M1, . . . ,Mkm+1, then we have K = ∪km+1

l=1 Ml and (x, ū) /∈ Nor Mw

for all w ∈ S(km + 1) because of the choice of the polytopes P0, . . . , Pk. It follows (x, ū) /∈ Nor K
by the definition of the set Nor K. This contradiction shows x ∈ bd Kv, and the same argument
proves x ∈ bd gKv.

Proof of Theorem 3.3: Let K,K ′ ∈ R with K = ∪m
i=1Ki, K ′ = ∪m′

i=1K
′
i, K1, . . . ,Km,

K ′
1, . . . ,K

′
m′ ∈ K and admissible pairs Kv,K

′
v′ for all v ∈ S(m), v′ ∈ S(m′). By the inclusion-

exclusion principle we have for all η ∈ B(Nor K), η′ ∈ B(Nor K ′), g ∈ Gn, j ∈ {0, . . . , n− 1}

Λj(K ∩ gK ′, η ∧ gη′) =
∑

v∈S(m)

∑
v′∈S(m′)

(−1)|v|+|v
′|Λj(Kv ∩ gK ′

v′ , η ∧ gη′) .
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From Lemma 5.6 and Theorem 3.1 it now follows that∫
Gn

Λj(K ∩ gK ′, η ∧ gη′) dµ(g)

=
∑

v∈S(m)

∑
v′∈S(m′)

(−1)|v|+|v
′|

∫
Gn

Λj(Kv ∩ gK ′
v′ , η ∧ gη′) dµ(g)

=
∑

v∈S(m)

∑
v′∈S(m′)

(−1)|v|+|v
′|

×
∫

Gn

Λj(Kv ∩ gK ′
v′ , (η ∩Nor Kv) ∧ g(η′ ∩Nor K ′

v′)) dµ(g)

=
∑

v∈S(m)

∑
v′∈S(m′)

(−1)|v|+|v
′|

n−1∑
k=j+1

αnjkΛk(Kv, η ∩Nor Kv)Λn+j−k(K ′
v′ , η

′ ∩Nor K ′
v′)

=
∑

v∈S(m)

∑
v′∈S(m′)

(−1)|v|+|v
′|

n−1∑
k=j+1

αnjkΛk(Kv, η)Λn+j−k(K ′
v′ , η

′)

=
n−1∑

k=j+1

αnjkΛk(K, η)Λn+j−k(K ′, η′) .

The extension of the Crofton formula to the convex ring can be achieved in the same way. The
following lemma is used, the proof of which is essentially the same as that of Lemma 5.6. It relies
heavily on Theorem 2.2.

Lemma 5.7. Let K ∈ R, K = K1 ∪ · · · ∪Km with K1, . . . ,Km ∈ K, and let η ∈ B(Nor K) and
q ∈ {1, . . . , n− 1}. Then for µq-a.e. E ∈ En

q we have

Λj(Kv ∩ E, η ∧ E) = Λj(Kv ∩ E, (η ∩Nor Kv) ∧ E)

for all j ∈ {0, . . . , q − 1} and all v ∈ S(m).
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