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Abstract. We consider approximations of a smooth convex body by inscribed and circumscribed convex
polytopes as the number of vertices, resp. facets tends to infinity. The measure of deviation used is the
difference of the mean width of the convex body and the approximating polytopes. The following results
are obtained. (i) An asymptotic formula for best approximation. (ii) Upper and lower estimates for step-
by-step approximation in terms of the so-called dispersion. (iii) For a sequence of best approximating
inscribed polytopes the sequence of vertex sets is uniformly distributed in the boundary of the convex
body where the density is specified explicitly.

1. Introduction and statement of results

1.1 Let C denote the space of convex bodies in Euclidean d-space IEd, i.e. of all compact
convex subsets of IEd with non-empty interior. For notions not explained below we refer
to [20]. Given C ∈ C and k = 0, . . . , d, let Wk(C) be the kth quermassintegral of C.
W0 = V is the volume, dW1 the surface area and 2

κd
Wd−1 = W the mean width. Here

κd = V (Bd) denotes the volume of the solid unit ball Bd of IEd. For convex bodies C, D
with C ⊃ D we consider the following notion of deviation:

δWk(C, D) = Wk(C)−Wk(D).

If C ∈ C, define P i
n = P i

n(C), n = d + 1, d + 2, . . . , to be the set of convex polytopes
which have at most n vertices and are inscribed into C, that is, their vertices are on the
boundary bd C of C. Similarly, let Pc

(n) = Pc
(n)(C) be the set of all convex polytopes

circumscribed to C which have at most n facets, each touching C.

1.2 It is well-known that for each C ∈ C there is an α > 0 such that

(1.1) δV (C,P i
n) = inf{δV (C, P ) : P ∈ P i

n} ≤
α

n2/(d−1)
for n = d + 1, . . .

If C ∈ C2, i.e. bd C is a surface of class C2, and the Gauss curvature κC of bd C is
positive, then

(1.2) δV (C,P i
n) ∼ deld−1

2
(

∫
bd C

κC(x)1/(d+1)dσ(x))(d+1)/(d−1) 1

n2/(d−1)
as n →∞;
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see [2, 17] (d = 2), [6] (d = 3) and [10] (general d). The constant deld−1 > 0 depends only
on d and σ is the ordinary surface area measure in IEd. Results analogous to (1.1) and
(1.2) hold also for δV (C,Pc

(n)).

It is possible to extend (1.1) to all quermassintegrals: let C ∈ C, then there is a
constant α > 0 such that for each k = 0, . . . , d− 1,

(1.3) δWk(C,P i
n) ≤ α

n2/(d−1)
for n = d + 1, . . . ,

A similar result holds for δWk(C,Pc
(n)).

For the proof of the inequality (1.3), note that by a familiar result on Hausdorff
approximation there exist a constant α1 > 0 and polytopes Pn ∈ P i

n, n = d + 1, . . . , with

Pn ⊂ C ⊂ Pn + εnB
d for n = d + 1, . . . , and εn =

α1

n2/(d−1)
,

see e.g. [8]. Here + denotes Minkowski addition. A version of Steiner’s formula for
parallel bodies together with the monotonicity of the quermassintegrals implies,

Wk(Pn) ≤ Wk(C) ≤ Wk(Pn + εnB
d)

= Wk(Pn) + β1εnWk+1(Pn) + · · ·+ βd−kε
d−k
n Wd(Pn)

≤ Wk(Pn) + β1εnWk+1(C) + · · ·+ βd−kε
d−k
n Wd(C)

≤ Wk(Pn) + α2εn,

where β1, . . . , βd−k > 0 and α2 > 0 depend on d, resp. on C. This gives (1.3), where
α = α1α2.

More difficult is the extension of (1.2). We have succeeded only to show the following
result.

Theorem 1. Let C ∈ C ∩ C2 with κC > 0 be given. Then

(1.4) δW (C,P i
n) ∼ divd−1

dκd

(

∫
bd C

κC(x)d/(d+1)dσ(x))(d+1)/(d−1) 1

n2/(d−1)
,

(1.5) δW (C,Pc
(n)) ∼

deld−1

dκd

(

∫
bd C

κC(x)d/(d+1)dσ(x))(d+1)/(d−1) 1

n2/(d−1)

as n →∞. Here divd−1 and deld−1 are positive constants depending only on d.

Remark 1. The case d = 2 has been stated previously by L.Fejes Tóth [2], and proved
by McClure and Vitale [17]. (In this case δW coincides up to a multiplicative constant
with the length deviation.) A related problem for curves in IEd was treated by Glea-
son [4] whilst Enomoto [1] considered curves on Riemannian manifolds. For asymptotic
stochastic approximation Müller [18] proved the following: let C ∈ C ∩ C3 with κC > 0
and let x1, . . . , xn be independent, identically distributed random points on bd C with
density function f . Then for W (C) − E(W (conv{x1, . . . , xn})) there is an asymptotic
formula as n → ∞. If f is chosen appropriately, then it is of the form (1.4) but with a
different constant. Here E and conv stand for mathematical expectation and convex hull,
respectively.
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Remark 2. The constants, divk, delk were introduced in [10]. They are related to
Dirichlet–Voronoi and to Delone tilings in IEk. The first values are

div1 =
1

12
, div2 =

5

18
√

3
, del1 =

1

6
, del2 =

1

2
√

3
;

see [2, 6, 7], but for k ≥ 3 it seems hopeless to determine the values explicitly.

Remark 3. We briefly sketch the first author’s original proof of Theorem 1, since we
shall follow a different approach. For a convex body C ∈ C with o ∈ intC, where int
stands for interior, we denote by C∗ its polar body, i.e. C∗ = {x ∈ IEd : 〈x, y〉 ≤ 1 for all
y ∈ C}. For C, D ∈ C with o ∈ intC and C ⊂ D, let

δ(C, D) :=

∫
D\C

‖x‖−d−1dλ(x),

where λ is Lebesgue measure in IEd. A simple computation using polar coordinates shows

(1.6) δW (C, D) =
2

dκd

δ(C∗, D∗).

Now let C ∈ C ∩ C2 with κC > 0 and assume o ∈ intC. Then C∗ ∈ C ∩ C2 and κC∗ > 0
(cf. [20], p. 111). The relation

(1.7) δ(C∗,P i
n) ∼ deld−1

2
(

∫
bd C∗

κC∗(x)1/(d+1)‖x‖−d+1dσ(x))(d+1)/(d−1) 1

n2/(d−1)

for n →∞ can be established in the same way as the corresponding formula for δV in [10].
By utilizing arguments of Kaltenbach [13], pp. 29 – 32, it can be seen that the integral
on the right side equals ∫

bd C

κC(x)d/(d+1)dσ(x).

Now (1.5) follows from (1.6) and (1.7). In the same way also (1.4) can be established.
The proof of the second author was of a more direct type. It contained ideas of the

proof of Theorem 1 in [10].
In this article we first prove a generalization of the crucial Lemma 3 in [10] to Rie-

mannian manifolds, and then deduce (1.4) from it. Reasons for proceeding in this way
are that the generalized Lemma is applicable also in other situations: it provides a short
proof of the asymptotic formula for δV (C,Pc

(n)), and it is used in the proof of Theorem 3

below. A similar but slightly more complicated proof can be given for (1.5); it makes use
of a generalization of Lemma 2 in [10].

Remark 4. Among all convex bodies C ∈ C ∩ C2 with κC > 0 and of given mean width
it is precisely the Euclidean balls which are asymptotically worst approximated in the
sense of Theorem 1. This follows from Hölder’s inequality for integrals and the inequality
W1(C) ≤ κ2−d

d Wd−1(C)d−1 where equality holds precisely for balls; cf. [20], p.334, (6.4.7).
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Remark 5. About refinements of Theorem 1 the same can be said as for Theorem 1 in
[9] or [10], respectively. Comparing the asymptotic formulae (1.2) and (1.4), analogous
results for other quermassintegrals seem plausible. In our attempts to prove such, two
types of difficulties turn up: first, it seems to be complicated to relate in a simple but
precise form the quermassintegrals of C and of its approximating polytopes; second, it is
unclear how to compare the contributions of parts of bd C with different curvatures.

1.3 Given a convex body C, the problem arises to determine polytopes in P i
n or Pc

(n), n =

d + 1, . . . , which approximate C reasonably well; see the discussion in [11] where we add
the reference to Gordon, Meyer, and Reisner [5].

Let C ∈ C ∩ C2 with κC > 0 and let γC = γC(·, ·) be the geodesic metric on bd C
defined by the second fundamental form. Given a sequence x1, x2, · · · ∈ bd C, define its
dispersion dn(xj) = dn(bd C, γC , xj), n = 1, 2, . . . , with respect to γC by

dn(xj) = sup{inf{γC(x, xj), j = 1, . . . , n} : x ∈ bd C};

see [9, 10, 19]. In [10] it was proved that there are constants β, γ > 0 depending on C
such that for any sequence x1, x2, · · · ∈ bd C with dn(xj) → 0 as n →∞,

(1.8) βdn(xj)
d+1 ≤ δV (C, conv{x1, . . . , xn}) ≤ γdn(xj)

2

for all sufficiently large n. The exponents d + 1 and 2 are best possible. Further, there is
a sequence y1, y2, · · · ∈ bd C with

dn(yj) ≤
δ

n1/(d−1)
,

where δ > 0 depends only on C. Using a well-dispersed sequence in the unit cube in IEd−1

constructed by Niederreiter [19], this sequence can be given explicitly in a simple way. A
result similar to (1.8) holds when conv{x1, . . . , xn} is replaced by H+

C (x1) ∩ · · · ∩H+
C (xn)

where HC(x) is the supporting hyperplane of C at x and H+
C (x) is the corresponding

supporting halfspace.
The following result complements (1.8).

Theorem 2. Let C ∈ C∩C2 with κC > 0. Then there are constants β, γ, δ > 0, depending
on C such that the following hold:

(i) For any sequence x1, x2, · · · ∈ bd C with dn(xj) = dn(bd C, γC , xj) → 0 as n → ∞
the inequalities

(1.9) βdn(xj)
d+1≤δW (C, conv{x1, . . . , xn}), δW (C, H+

C (x1)∩· · ·∩H+
C (xn))≤γdn(xj)

2

hold for all sufficiently large n. The exponents d + 1 and 2 are best possible.

(ii) There is an explicitly specifiable sequence y1, y2, · · · ∈ bd C with

(1.10) dn(yj) ≤
δ

n1/(d−1)
for n = 1, 2, . . .
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Remark 6. Theorem 2 shows that a suitable step-by-step approximation method is of
the same order as best approximation. A sequence satisfying (1.10) is easy to construct:
consider finitely many squares (i.e. cubes of dimension d − 1) such that the interiors of
their parallel projections on bd C cover bd C. In each square choose a well-dispersed
sequence of points as described by Niederreiter [18]. Arrange the images of the points of
these sequences in bd C into a sequence in the following way: take first the images of the
first points of these sequences in a definite order, then take the images of all second points
in the same order, then take the images of all third points, again in the same order, etc.

Remark 7. Similar results hold for all quermassintegrals, but the lower estimates are
more difficult to prove than those in Theorem 2.

1.4 While in general there is no hope to determine best approximating polytopes of a
convex body with respect to any of the standard notions of deviation, some positive
information has been obtained on the distribution of their vertices. For d = 2 and for
sufficiently differentiable C with κC > 0, McClure and Vitale [17] and, in a more precise
form, Ludwig [15, 16] showed that for δV and the Hausdorff metric δH the vertices of the
best approximating polygons are — in a definite sense — almost equally spaced on bd C.
For general d Glasauer and Schneider [3] proved the following: given C ∈ C ∩ C2 with
κC > 0, let Pn ∈ P i

n, n = d+1, . . . , be best approximating polytopes of C with respect to
δH . Then the sequence (vertPn) of the sets of vertices of the Pns is uniformly distributed

with respect to the density κ
1/2
C . That is, for each Jordan measurable set J ⊂ bd C,

#(J ∩ vertPn)

n
→

∫
J

κC(x)1/2dσ(x)∫
bd C

κC(x)1/2dσ(x)
as n →∞;

see [12, 14]. J is called Jordan measurable if it is Borel and the σ-measure of its boundary
in bd C is 0. # means cardinal number.

A related result is the following.

Theorem 3. Let C ∈ C ∩ C2 with κC > 0 and let Pn ∈ P i
n, Qn ∈ Pc

(n), n = d + 1, . . . , be

best approximating polytopes with respect to δW . Then the sequences of sets (vertPn) and

(C ∩ bd Qn) are uniformly distributed in bd C with respect to the density κ
d/(d+1)
C .

Remark 7. We give the proof only for (vertPn).

Remark 8. Our method of proof shows that a similar result holds for δV with corre-
sponding density κ

1/(d+1)
C and it seems plausible that there are also extensions to the other

quermassintegrals.

2. Tools on tilings and coverings of manifolds

2.1 In order to make the exposition more self-contained, we repeat the relevant parts of
the definitions in [9].

Let M be a (d−1)-dimensional (Riemannian) manifold of class C2 with metric of class
C0. Then for any p ∈ M there are a neighborhood U of p in M and a homeomorphism
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h =“ ′ ” of U onto an open ball U ′ = h(U) in IEd−1. To any u ∈ U ′ there is assigned a
quadratic form qu(s) = qp,u(s) on IEd−1, the coefficients of which are continuous in u.

A curve K in M is of class C1 if it has a parametrization x : [α, β] → M such that
for any U and corresponding h and any interval [λ, µ] ⊂ [α, β] with x([λ, µ]) ⊂ U the
function u = h ◦ x : [λ, µ] → U ′ is of class C1. If K ⊂ U , its length is

(2.1)

β∫
α

qu(τ)(u̇(τ))1/2dτ ,

otherwise dissect K suitably and add. For x, y ∈ M , let γM(x, y) be the infimum of the
lengths of the curves of class C1 in M which connect x, y. γM is the geodesic metric on
M . It determines the original topology on M . The geodesic disc D(x, %) in M with center
x ∈ M and radius % > 0 is the set {y ∈ M : γM(x, y) ≤ %}.

A set J in M is Jordan measurable if its closure clJ is compact and for any p, U, h and
any neighbourhood V of p with clV ⊂ U for which V ′ is Jordan measurable in IEd−1, also
(J ∩V )′ is Jordan measurable in IEd−1. If M is compact, then it is Jordan measurable and
so are geodesic discs. Finite unions, intersections and set differences of Jordan measurable
sets are again Jordan measurable. If J ⊂ V , then

(2.2) ω(J) =

∫
J ′

(det qu)
1/2du (du = du1 . . . dud−1)

is its Jordan measure; otherwise dissect J suitably and add. Clearly, ω gives rise to a
(Riemann) integral on M . ω may be extended to a Borel measure on M . Using this
measure, one may alternatively define J ⊂ M to be Jordan measurable if clJ is compact
and ω(bd J) = 0; compare subsection 1.4.

Let | · | and ‖ · ‖ denote volume and Euclidean norm in IEd−1.

2.2 Our main tool is the following result which extends Lemma 3 in [10].

Lemma 1. Let J ⊂ M be Jordan measurable and f : M → IR+ continuous and bounded.
Then

(2.3) inf{
∫
J

min{γM(v, x)2 : v ∈ D}f(x)dω(x) : D ⊂ M, #D ≤ n}

∼ divd−1(

∫
J

f(x)(d−1)/(d+1)dω(x))(d+1)/(d−1) 1

n2/(d−1)

as n →∞, where divd−1 > 0 is a constant depending only on d.

Proof. Let λ > 1.

1. We need Lemma 3 in [10] in the following form.
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(2.4) Let Q = {s ∈ IEd−1 : 0 ≤ si ≤ 1}. For every k = 1, 2, . . . , there is a finite set
D ⊂ IEd−1 with #D ≤ k for which

wk =

∫
Q

min{‖r − s‖2 : r ∈ D}ds (ds = ds1 . . . dsd−1)

is minimal. Further, there is a constant, divd−1 > 0, depending only on d, such
that

wk ∼
divd−1

k2/(d−1)
as k → +∞.

If a point r ∈ D is not in Q, then the point q ∈ Q closest to it satisfies the inequality
‖r−s‖ > ‖q−s‖ for all s ∈ Q. Hence we may suppose that the set D in (2.4) is contained
in Q. This remark together with a suitable linear transformation leads to the following
version of (2.4).

(2.5) Let q(·) be a positive quadratic form on IEd−1 and R ⊂ IEd−1 a square in the sense
of the norm q1/2. Then for all sufficiently large k the following hold.

(i) For any set D ⊂ IEd−1 with #D ≤ k,∫
R

min{q(r − s) : r ∈ D}ds ≥ divd−1

λ
|R|(d+1)/(d−1)(det q)1/(d−1) 1

k2/(d−1)
.

(ii) There is a set E ⊂ R with #E ≤ k such that∫
R

min{q(r − s) : r ∈ E}ds ≤ λdivd−1|R|(d+1)/(d−1)(det q)1/(d−1) 1

k2/(d−1)
.

A further needed tool is the following mean inequality.

(2.6)

(
σ

(d+1)/(d−1)
1 + · · ·+ σ

(d+1)/(d−1)
n

n

)(d−1)/(d+1)

≥ σ1 + · · ·+ σn

n
for σ1, . . . , σn≥0.

2. For p ∈ M , let U, h =“ ′ ”, q(·) and U ′ = h(U) be explained as above. q(·) = qp,(·) is
positive and its coefficients are continuous in U ′. Further, f is continuous and positive on
U . Hence, by replacing U by a suitable smaller neighbourhood of p and changing notation
if necessary, we may assume the following, where qu = qp,u, qp′ = qp,p′ and fp′ = f(p):

(1/λ)qp′(s) ≤ qu(s) ≤ λqp′(s) for u ∈ U ′, s ∈ IEd−1,
(1/λ)(det qp′)

1/2 ≤ (det qu)
1/2 ≤ λ(det qp′)

1/2 for u ∈ U ′,
(1/λ)fp′ ≤ f(x) ≤ λfp′ for x ∈ U.

We now show,

(1/λ)qp′(x
′ − y′) ≤ γM(x, y)2 ≤ λqp′(x

′ − y′) for x, y ∈ U, γM(x, y) < dist(x, bd U),
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where dist means distance of sets in M in the sense of the metric γM .
To see the first inequality, consider all curves of class C1 connecting x, y with length

< dist(x, bd U). These curves are all contained in U . Now apply the definition (2.1) of
length, the above inequality between qp′ and qu and the definition of γM to these curves.
For the second inequality connect x′, y′ with a line segment S and consider the curve
h−1(S) ⊂ U . Then proceed as in the case of the first inequality.

In each neighbourhood U choose an open Jordan measurable neighbourhood V of p
with clV ⊂ U . As p ranges over M , the V s form an open covering of the compact set clJ .
Let Vl, l = 1, . . . ,m, be a finite subcover. Then the sets

Il = J ∩ (Vl\(V1 ∪ · · · ∪ Vl−1)), l = 1, . . . ,m,

are pairwise disjoint Jordan measurable sets with union J . We clearly may assume that
J is open.

Thus, after omitting the empty ones among I1, . . . , Im, renumbering and changing
notation, if necessary, we obtain the following.

(2.7) There are points pl ∈ M, l = 1, . . . ,m, with corresponding Ul, Vl, hl =“ ′ ”, qu =
qpl,u, ql = qpl,p

′
l
and fl = f(pl) such that

(i) (1/λ)ql(s) ≤ qu(s) ≤ λql(s) for u ∈ U ′
l , s ∈ IEd−1,

(ii) (1/λ)(det ql)
1/2 ≤ (det qu)

1/2 ≤ λ(det ql)
1/2 for u ∈ U ′

l ,

(iii) (1/λ)fl ≤ f(x) ≤ λfl for x ∈ Ul,

(iv) (1/λ)ql(x
′ − y′) ≤ γM(x, y)2 ≤ λql(x

′ − y′) for x, y ∈ Ul

with γM(x, y) < dist(x, bd Ul),

(v) J = I1∪· · ·∪Im where the Ils (⊂ Vl) are Jordan measurable, pairwise disjoint,
and have non-empty interior.

3. Next the following lower estimate will be established.

(2.8) For all sufficiently large n holds:

inf{
∫
J

min{γM(x, y)2 : v ∈ D}f(x)dω(x) : D ⊂ M, #D ≤ n}

≥ divd−1

λ12
(

∫
J

f(x)(d−1)/(d+1)dω(x))(d+1)/(d−1) 1

n2/(d−1)
.

For each l = 1, . . . ,m, choose sets Sli, i = 1, . . . , il, such that

(2.9) the sets Sli are compact, pairwise disjoint sets in the interior intIl of Il where the

images S ′
li are squares in IEd−1 in the sense of the norm q

1/2
l and∑

i

|S ′
li| ≥

1

λ
|I ′l |.
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The Slis are compact and contained in the open set Ul. By (2.7v) the Ils are pairwise
disjoint. Hence there is a δ > 0 such that

(2.10) dist(Sli, bd Ul) > δ for each pair (l, i),

(2.11) dist(Sli, Skj) > 2δ for all pairs (l, i) 6= (k, j).

For each n = 1, 2, . . . , choose a set Dn ⊂ M with #Dn ≤ n, for which

(2.12) inf{
∫
J

min{γM(v, x)2 : v ∈ D}f(x)dω(x) : D ⊂ M, #D ≤ n}

≥ 1

λ

∫
J

min{γM(v, x)2 : v ∈ Dn}f(x)dω(x).

f is bounded and there are sets D ⊂ J with #D ≤ n which are arbitrarily densely
distributed in J if n is sufficiently large. This implies that the left hand side and thus also
the right hand side in (2.12) tends to 0 as n →∞. Since f is positive, the latter implies
in turn that the sets Dn are arbitrarily densely distributed in intJ if n is sufficiently large.
Thus, in particular, the following hold: if

Dnli = {v ∈ Dn : dist(v, Sli) < δ}, knli = #Dnli,

then

(2.13) knli → +∞ as n →∞,

(2.14) if n is sufficiently large, then min{γM(v, x)2 : v ∈ Dn} = min{γ(v, x)2 : v ∈ Dnli}
for each x ∈ Sli.

By (2.11) the sets Dnli are pairwise disjoint for each n. This implies that

(2.15) kn11 + · · ·+ kn1i1 + · · ·+ knmim ≤ n.

The definition of ω in (2.2) together with propositions (2.14), (2.10), (2.7), (2.13) and
(2.5) yields the following:

(2.16) if n is sufficiently large, then we have∫
Sli

min{γM(v, x)2 : v ∈ Dn}f(x)dω(x)

=

∫
Sli

min{γM(v, x)2 : v ∈ Dnli}f(x)dω(x)

≥ 1

λ3

∫
S′

li

min{ql(r − s) : r ∈ D′
nli}fl(det ql)

1/2ds

≥ divd−1

λ4
|S ′

li|(d+1)/(d−1)(det ql)
(d+1)/2(d−1)fl

1

k
2/(d−1)
nli

.
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Now, using (2.12), (2.7), (2.9), (2.16), (2.6), (2.9), (2.15), (2.7), (2.2) and (2.7) again, we
see that for all sufficiently large n,

inf{
∫
J

min{γM(v, x)2 : v ∈ D}f(x)dω(x) : D ⊂ M, #D ≤ n}

≥ 1

λ

∫
J

min{γM(v, x)2 : v ∈ Dn}f(x)dω(x)

≥ 1

λ

∑
l,i

∫
Sli

min{γM(v, x)2 : v ∈ Dnli}f(x)dω(x)

≥ divd−1

λ5

∑
l,i

|S ′
li|(d+1)/(d−1)(det ql)

(d+1)/2(d−1)fl
1

k
2/(d−1)
nli

=
divd−1

λ5

∑
l,i

(|S ′
li|(det ql)

1/2f
(d−1)/(d+1)
l

1

knli

)(d+1)/(d−1)knli

≥ divd−1

λ5
(
∑
l,i

|S ′
li|(det ql)

1/2f
(d−1)/(d+1)
l

1

knli

knli)
(d+1)/(d−1) 1

(kn11 + · · ·+ knmim)2/(d−1)

≥ divd−1

λ8
(
∑

l

|I ′l |(det ql)
1/2f

(d−1)/(d+1)
l )(d+1)/(d−1) 1

n2/(d−1)

=
divd−1

λ8
(
∑

l

∫
I′l

f
(d−1)/(d+1)
l (det ql)

1/2ds)(d+1)/(d−1) 1

n2/(d−1)

≥ divd−1

λ12
(
∑

l

∫
Il

f(x)(d−1)/(d+1)dω(x))(d+1)/(d−1) 1

n2/(d−1)

=
divd−1

λ12
(

∫
J

f(x)(d−1)/(d+1)dω(x))(d+1)/(d−1) 1

n2/(d−1)
,

concluding the proof of (2.8).

4. Finally, the corresponding upper estimate will be proved.

(2.17) For all sufficiently large n, the following inequality holds:

inf{
∫
J

min{γM(v, x)2 : v ∈ D}f(x)dω(x) : D ⊂ M, #D ≤ n}

≤ λ14divd−1(

∫
J

f(x)(d−1)/(d+1)dω(x))(d+1)/(d−1) 1

n2/(d−1)
.

For each l = 1, . . . ,m, choose in IEd−1 a facet-to-facet tiling with closed squares in the
sense of the norm q

1/2
l , each having area

(2.18)

∑
l

|I ′l |(det ql)
1/2f

(d−1)/(d+1)
l

(det ql)1/2f
(d−1)/(d+1)
l

α,

10



where α > 0 is chosen such that the following relations hold: let T ′
li, i = 1, . . . , il, be the

squares in IEd−1 that meet I ′l , then

(2.19) I ′l ⊂ T ′
l1 ∪ · · · ∪ T ′

lil
⊂ U ′

l ,

(2.20) |I ′l | ≤ il|T ′
l1| ≤ λ|I ′l |.

Clearly,

(2.21) Tli = h−1
l (T ′

li) ⊂ M is Jordan measurable.

We now show that

(2.22) for i0 = i1 + · · ·+ im the inequality

i0
il
≤ λ

∑
l

|I ′l |(det ql)
1/2f

(d−1)/(d+1)
l

|I ′l |(det ql)1/2f
(d−1)/(d+1)
l

holds.

For the proof take the right hand side inequality in (2.20), multiply both sides by

(det ql)
1/2f

(d−1)/(d+1)
l , insert the value for |T ′

li| from (2.18) and sum over l. This gives
i0α ≤ λ or α ≤ λ/i0. Now consider the left hand side inequality in (2.20), insert the value
(2.18) for |T ′

li|, rearrange and note that α ≤ λ/i0. The proof of (2.22) is now complete.
Let k0 be so large that the conclusion of (2.5) holds for all k ≥ k0. Then

(2.23) for each k ≥ k0 there is a set Ekli ⊂ Tli with #Ekli ≤ k and∫
T ′

li

min{ql(r − s) : r ∈ E ′
kli}fl(det ql)

1/2ds

≤ λdivd−1|T ′
li|(d+1)/(d−1)(det ql)

(d+1)/2(d−1)fl
1

k2/(d−1)
.

For the proof of (2.17) we first consider the case n = i0k, k ≥ k0 where i0 = i1+· · ·+im.
Let

En =
⋃
l,i

Ekli.

Clearly, #En ≤ i0k = n. This combined with (2.7), (2.19), (2.21), (2.2), (2.7), (2.23),
(2.20), (2.22), (2.7), (2.2) and (2.7) then shows that

(2.24) inf{
∫
J

min{γM(v, x)2 : v ∈ D}f(x)dω(x) : D ⊂ M, #D ≤ n}

11



≤
∫
J

min{γM(v, x)2 : v ∈ En}f(x)dω(x)

≤
∑
l,i

∫
Tli

min{γM(v, x)2 : v ∈ Ekli}f(x)dω(x)

≤ λ3
∑
l,i

∫
T ′

li

min{ql(r − s) : r ∈ E ′
kli}fl(det ql)

1/2ds

≤ λ4divd−1

∑
l,i

|T ′
li|(d+1)/(d−1)(det ql)

(d+1)/2(d−1)fl
1

k2/(d−1)

= λ4divd−1

∑
l

(il|T ′
l1|)(d+1)/(d−1)(det ql)

(d+1)/2(d−1)fl
1

(ilk)2/(d−1)

≤ λ7divd−1

∑
l

|I ′l |(d+1)/(d−1)(det ql)
(d+1)/2(d−1)fl(

i0
il

)2/(d−1) 1

(i0k)2/(d−1)

≤ λ9divd−1

∑
l

|I ′l |(d+1)/(d−1)(det ql)
(d+1)/2(d−1)fl ×

×
(
∑
l

|I ′l |(det ql)
1/2f

(d−1)/(d+1)
l )2/(d−1)

(|I ′l |(det ql)1/2f
(d−1)/(d+1)
l )2/(d−1)

1

(i0k)2/(d−1)

= λ9divd−1(
∑

l

|I ′l |(det ql)
1/2f

(d−1)/(d+1)
l )(d+1)/(d−1) 1

(i0k)2/(d−1)

= λ9divd−1(
∑

l

∫
I′l

f
(d−1)/(d+1)
l (det ql)

1/2ds)(d+1)/(d−1) 1

(i0k)2/(d−1)

≤ λ13divd−1(
∑

l

∫
Il

f(x)(d−1)/(d+1)dω(x))(d+1)/(d−1) 1

(i0k)2/(d−1)

= λ13divd−1(

∫
J

f(x)(d−1)/(d+1)dω(x))(d+1)/(d−1) 1

(i0k)2/(d−1)
.

This concludes the proof of (2.17) for n of the form i0k.
For general n we argue as follows: let k1 ≥ k0 be so large that

(2.25) (
k + 1

k
)2/(d−1) ≤ λ for all k ≥ k1.

Now, let n ≥ i0k1 and choose k ≥ k1 with i0k ≤ n < i0(k + 1). Then we obtain from
(2.24) and (2.25) that

inf{
∫
J

min{γM(v, x)2 : v ∈ D}f(x)dω(x) : D ⊂ M, #D ≤ n}

≤ inf{
∫
J

min{γM(v, x)2 : v ∈ D}f(x)dω(x) : D ⊂ M, #D ≤ i0k}

≤ λ13+1divd−1(

∫
J

f(x)(d−1)/(d+1)dω(x))(d+1)/(d−1) 1

n2/(d−1)
,

12



concluding the proof of (2.17) for general n.

5. Since λ > 1 was arbitrary, Lemma 1 is an immediate consequence of propositions (2.8)
and (2.17).

2.3 The proof of the following result is left to the reader.

Lemma 2. Let J ⊂ M be Jordan measurable and let µ > 1. Then there is a constant
τ > 0 such that

1

µ
κd−1%

d−1 ≤ ω(D(x, %)) ≤ µκd−1%
d−1 for all x ∈ J and 0 < % ≤ τ.

2.4 The definition of dispersion in 1.3 may easily be generalized to any compact metric
space and thus in particular to the closure of a Jordan measurable set in M endowed with
the geodesic metric γM . Essentially the same proof as for Lemma 2 in [9] then yields the
next proposition.

Lemma 3. Let J ⊂ M be Jordan measurable. Then there are constants α, δ > 0 such
that the following hold:

(i) For any sequence x1, · · · ∈ clJ with dn(xj) = dn(clJ, γM , xj) → 0 as n →∞,

dn(xj) >
α

n1/(d−1)

for all sufficiently large n.

(ii) There is an explicitly specifiable sequence y1, · · · ∈ clJ such that

dn(yj) ≤
δ

n1/(d−1)
for n = 1, 2, . . .

3. Proof of Theorem 1

We prove only (1.4). Let λ > 1.

3.1 Let bd C be endowed with the second fundamental form and let γC and ω be the
corresponding geodesic metric and surface area measure, respectively; see 2.1.

ω and the ordinary surface area measure σ (which corresponds to the first fundamental
form) are related by the Radon–Nikodym derivative

(3.1)
dω

dσ
= κ

1/2
C .

Now we refer to the outline of the proof of Theorem 3 in [9]. Corresponding to λ
there are open neighbourhoods Ul, l = 1, . . . ,m, in bd C which cover bd C. Since bd C
is compact, Lebesgue’s theorem shows that there is a δ > 0 such that for any v ∈ bd C
the geodesic disc with center v and radius δ is contained in one of the neighbourhoods Ul.
Thus proposition (5.1) in [9] shows the following:

13



(3.2)
γC(v, x)2

2λ5
≤ dist(v, HC(x)) ≤ λ5γC(v, x)2

2
for v, x ∈ bd C with γC(v, x) < δ.

Here dist means the ordinary distance of sets in IEd.

3.2 Let Pn ∈ P i
n be best approximating polytopes of C with respect to δW . Then we have

δW (C,P i
n) = δW (C, Pn) =

2

dκd

∫
bd C

min{dist(v, HC(x)) : v ∈ vertPn}κC(x)dσ(x).

Clearly, δW (C, Pn) → 0 as n →∞ and since C is strictly convex, the following holds for
all sufficiently large n: for any x ∈ bd C there is a v ∈ vertPn with γC(v, x) < δ and
dist(v, HC(x)) = min{dist(w, HC(x)) : w ∈ vertPn}. Combined with (3.2) this shows that

(3.3) for all sufficiently large n we obtain

δW (C,P i
n)

≥ 1

λ5dκd

∫
bd C

min{γC(v, x)2 : v ∈ vertPn}κC(x)dσ(x)

≥ 1

λ5dκd

inf{
∫

bd C

min{γC(v, x)2 : v ∈ D}κC(x)dσ(x) : D ⊂ bd C, #D ≤ n}.

Since δW (C,P i
n) = δW (C, Pn) → 0, also the last expression in (3.3) tends to 0 as

n →∞. Noting that κC > 0 we thus obtain the following: let Dn ⊂ bd C with #Dn ≤ n
be chosen such that the infimum in this expression is attained for D = Dn, then for
all sufficiently large n we have the following: for any x ∈ bd C there is a v ∈ Dn with
γC(v, x) < δ. Hence (3.2) implies that

(3.4) for all sufficiently large n we have:

λ5

dκd

inf{
∫

bd C

min{γC(v, x)2 : v ∈ D}κC(x)dσ(x) : D ⊂ bd C, #D ≤ n}

≥ 2

dκd

∫
bd C

min{dist(v, HC(x)) : v ∈ vert conv Dn}κC(x)dσ(x)

≥ δW (C,P i
n).

3.3 Combining (3.3), (3.4), (3.1), Lemma 1 and again (3.1) we obtain the following:

(3.5) for all sufficiently large n holds:

δW (C,P i
n){

≤
≥

}{
λ5

1
λ5

}
× 1

dκd

inf{
∫

bd C

min{γC(v, x)2 : v ∈ D}κC(x)dσ(x) : D ⊂ bd C, #D ≤ n}{
≤
≥

}{
λ6

1
λ6

}
× divd−1

dκd

(

∫
bd C

κC(x)(d−1)/2(d+1)dω(x))(d+1)/(d−1) 1

n2/(d−1)

=

{
λ6

1
λ6

}
× divd−1

dκd

(

∫
bd C

κC(x)d/(d+1)dσ(x))(d+1)/(d−1) 1

n2/(d−1)
.
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Since λ > 1 was arbitrary, this implies the asymptotic formula (1.4).

4. Proof of Theorem 2

The proofs for the cases conv{x1, . . . , xn} and H+
C (x1) ∩ · · · ∩H+

C (xn) are similar; hence
only the former will be considered.

4.1 Let bd C be endowed with the geodesic metric γC and the measure ω determined by
the second fundamental form. Let λ = 21/5. Then there is a δ > 0 such that

(4.1)
γC(v, x)2

4
≤ dist(v, HC(x)) ≤ γC(v, x)2 for v, x ∈ bd C with γC(v, x) < δ,

see (3.2).
Let x1, · · · ∈ bd C be a sequence with dn(xj) = dn(bd C, γC , xj) → 0 as n → ∞. The

definition of dn(xj) then shows that

(4.2) for all sufficiently large n, for any x ∈ bd C there is an xk with k ≤ n and
γC(xk, x) < δ and dist(xk, HC(x)) = min{dist(xj, HC(x)) : j ≤ n}.

4.2 By (4.2), (4.1) and the definition of dn(xj),

(4.3) for all sufficiently large n we have

δW (C, conv{x1, . . . , xn})

=
2

dκd

∫
bd C

min{dist(xk, HC(x)) : k ≤ n}κC(x)dσ(x)

≤ 2

dκd

∫
bd C

min{γC(xk, x)2 : k ≤ n}κC(x)dσ(x)

≤ 2

dκd

∫
bd C

κC(x)dσ(x) dn(xj)
2 =

2

dκd

∫
Sd−1

dσ(x) dn(xj)
2

= 2dn(xj)
2.

Given n, let x0 ∈ bd C be chosen such that dn(xj) = min{γC(x0, xk) : k ≤ n}. Then
clearly,

(4.4) min{γ(xk, x) : k ≤ n} ≥ dn(xj)− γC(x0, x) for each x ∈ D(x0, dn(xj)).

Propositions (4.2), (4.1), (4.4), (3.1), the assumption that dn(xj) → 0 as n →∞, and
Lemma 2, where µ = 2, together imply the next statement:

(4.5) for all sufficiently large n we have the following
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δW (C, conv{x1, . . . , xn})

=
2

dκd

∫
bd C

min{dist(xk, HC(x)) : k ≤ n}κC(x)dσ(x)

≥ 1

2dκd

∫
bd C

min{γC(xk, x)2 : k ≤ n}κC(x)dσ(x)

≥ 1

2dκd

∫
D(x0, 1

2
dn(xj))

(
1

2
dn(xj))

2κC(x)dσ(x)

=
1

8dκd

∫
D(x0, 1

2
dn(xj))

κC(x)1/2dω(x) dn(xj)
2

≥ 1

8dκd

min{κC(x)1/2 : x ∈ bd C}κd−1

2
(
dn(xj)

2
)d−1dn(xj)

2

=
κd−1

2d+3dκd

min{κC(x)1/2 : x ∈ bd C}dn(xj)
d+1.

Propositions (4.3) and (4.5) immediately give (1.9).

4.3 Clearly, (ii) follows from Lemma 3.

4.4 To conclude the proof of (i) we have to show that the exponents 2 and d + 1 in (1.9)
are best possible.

If 2 were not best possible then there were constants ε > 0 and p > 2 such that for
the sequence y1, · · · ∈ bd C from (ii),

δW (C,P i
n) ≤ δW (C, conv{y1, . . . , yn})

≤ εdn(yj)
p ≤ εδp

np/(d−1)

for all sufficiently large n, in contradiction to Theorem 1.
For the proof that d + 1 is best possible consider a sequence %1, %2, · · · ↘ 0 and let

x0 ∈ bd C. Next, choose a sequence x1, · · · ∈ bd C and a sequence of indices n1 < n2 < . . .
for which the following hold:

(4.6) dn(xj) → 0 as n →∞,

(4.7) x1, . . . , xni
∈ (bd C)\D(x0, %i) and thus dni

(xj) ≥ %i for i = 1, 2, . . . ,

(4.8)

∫
bd C

min{γC(xk, x)2 : k ≤ ni}κC(x)dσ(x)

≤ 2

∫
D(x0,%i)

min{γC(xk, x)2 : k ≤ ni}κC(x)dσ(x).

Then (4.6), (4.1), (4.8), (4.7), the definition of dni
(xj), (3.1), (4.6) and Lemma 2 together

show that
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for all sufficiently large ni the following hold:

δW (C, conv{x1, . . . , xni
})

=
2

dκd

∫
bd C

min{dist(xk, HC(x)) : k ≤ ni}κC(x)dσ(x)

≤ 2

dκd

∫
bd C

min{γC(xk, x)2 : k ≤ ni}κC(x)dσ(x)

≤ 4

dκd

∫
D(x0,%i)

min{γC(xk, x)2 : k ≤ ni}κC(x)dσ(x)

≤ 4

dκd

∫
D(x0,dni (xj))

κC(x)1/2dω(x)dni
(x)2

≤ 4

dκd

max{κC(x)1/2 : x ∈ bd C}κd−1(2dni
(xj))

d−1dni
(xj)

2

=
2d+1κd−1

dκd

max{κC(x)1/2 : x ∈ bd C}dni
(xj)

d+1.

5. Proof of Theorem 3

We consider only the case of inscribed best approximating polytopes Pn ∈ P i
n.

5.1 Let bd C be endowed with the geodesic metric γC and the measure ω determined by
the second fundamental form.

Let a Jordan measurable set J ⊂ bd C be given. Define

a = (

∫
J

κC(x)d/(d+1)dσ(x) )(d+1)/(d−1), b = (

∫
(bd C)\J

κC(x)d/(d+1)dσ(x) )(d+1)/(d−1).

For n = d + 1, . . . , let
kn = #(J ∩ vertPn).

We have to show that

(5.1)
kn

n
→ sJ =

a(d−1)/(d+1)

a(d−1)/(d+1) + b(d−1)/(d+1)
as n →∞.

5.2 Suppose that (5.1) does not hold. Then there is a subsequence n1 < n2 < . . . of
1, 2, . . . , such that

(5.2)
kni

ni

→ tJ , say, as i →∞, where sJ 6= tJ .

An elementary calculation shows that
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(5.3) min
s∈[0,1]

a

s2/(d−1)
+

b

(1− s)2/(d−1)
=

a

s
2/(d−1)
J

+
b

(1− sJ)2/(d−1)

= (a(d−1)/(d+1) + b(d−1)/(d+1))(d+1)/(d−1) = (

∫
bd C

κ
d/(d+1)
C dσ )(d+1)/(d−1)

<
a

t
2/(d−1)
J

+
b

(1− tJ)2/(d−1)
.

Thus we may choose compact Jordan measurable sets A ⊂ intJ and B ⊂ int(bd C\J)
such that for

a′ = (

∫
A

κ
d/(d+1)
C dσ )(d+1)/(d−1), b′ = (

∫
B

κ
d/(d+1)
C dσ )(d+1)/(d−1)

we still have,

(5.4)
a

s
2/(d−1)
J

+
b

(1− sJ)2/(d−1)
<

a′

t
2/(d−1)
J

+
b′

(1− tJ)2/(d−1)
.

(int stands for interior with respect to bd C.)
The sets vertPn are arbitrarily densely distributed on bd C if n is sufficiently large.

Since A ⊂ intJ, B ⊂ int(bd C\J) and A, B are compact, this shows that

(5.5) for all sufficiently large n

min{γC(v, x)2 : v∈vertPn} = min{γC(v, x)2 : v∈J ∩ vertPn} for all x∈A,

min{γC(v, x)2 : v∈vertPn} = min{γC(v, x)2 : v∈(bd C\J) ∩ vertPn} for all x∈B.

Now, combining the fact that in 3.3 λ > 1 was arbitrary, and propositions (3.5), (5.5),
Lemma 1, (5.2), (5.4), and (5.3), we obtain the following:

(

∫
bd C

κ
d/(d+1)
C dσ )(d+1)/(d−1) = lim

n→∞
{( dκd

divd−1

δW (C, Pn))n2/(d−1)}

= lim
n→∞

{( 1

divd−1

∫
bd C

min{γC(v, x)2 : v ∈ vertPn}κCdσ)n2/(d−1)}

≥ lim inf
n→∞

{( 1

divd−1

(

∫
A

min{γC(v, x)2 : v ∈ J ∩ vertPn}κCdσ

+

∫
B

min{γC(v, x)2 : v ∈ (bd C\J) ∩ vertPn}κCdσ))n2/(d−1)}

≥ lim inf
i→∞

{( 1

divd−1

(inf{
∫
A

min{γC(v, x)2 : v ∈ DA}κCdσ : DA ⊂ bd C, #DA ≤ kni
}

+ inf{
∫
B

min{γC(v, x)2 : v ∈ DB}κCdσ : DB ⊂ bd C, #DB ≤ ni − kni
})n2/(d−1)

i }

≥ {(
∫
A

κ
d/(d+1)
C dσ )(d+1)/(d−1) 1

t
2/(d−1)
J

+ (

∫
B

κ
d/(d+1)
C dσ )(d+1)/(d−1) 1

(1− tJ)2/(d−1)
}(d−1)/(d+1)

=
a′

t
2/(d−1)
J

+
b′

(1− tJ)2/(d−1)
>

a

s
2/(d−1)
J

+
b

(1− sJ)2/(d−1)
= (

∫
bd C

κ
d/(d+1)
C dσ )(d+1)/(d−1).
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Contradiction.
This concludes the proof of (5.1) and the proof of Theorem 3 is complete.
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