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Abstract. For convex bodies K, K ′ and a translation τ in n-dimensional Euclidean space, let K ∨ τK ′

be the convex hull of the union of K and τK ′. Let F be a geometric functional on the space of all convex
bodies. We consider special families (αr)r>0 of measures on the translation group Tn such that the limit

lim
r→∞

∫
Tn

F (K ∨ τK ′) dαr(τ)

exists and can be expressed in terms of K and K ′. The functionals F under consideration are derived from the
mixed volume or the mixed area measure functional. Analogous questions are treated for the motion group
instead of the translation group. The resulting relations can be regarded as dual counterparts to various
versions of the principal kinematic formula. Motivation for our investigations is provided by classical and
recent results from spherical integral geometry.

Key words: Convex body, convex hull operation, mixed area measure, mixed volume, generalized curvature
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The classical results of convexity-related integral geometry concern mean value formulae for intersections,
orthogonal projections and Minkowski sums of convex bodies. One further basic operation, which is in some
sense dual to the intersection, is defined by the convex hull of the union of two convex bodies. Integral
formulae concerning this operation are known in spherical integral geometry, as intersection formulae can
be transferred, due to the spherical principle of duality, into results regarding the convex hull operation.
It is clear that, if there are corresponding formulae in Euclidean space, they must be of a different nature
because of the non-compactness of Euclidean space and its motion group. It is shown in this article that
there are kinematic formulae, in the form of limit relations, which resemble these spherical results. They
have particularly nice properties with respect to Minkowski addition, and they are related to the well-known
rotation sum and projection formulae. In a first step, we prove translative versions, which have a simpler
structure than the known translative intersection formulae. It is interesting that the invariant measure on the
translation group (Lebesgue measure) can be replaced by much more general measures while still leading to
simple explicit results. We then apply known rotational mean value formulae to deduce kinematic versions
from our translative results.

For integral geometry of spherically convex bodies, we refer to the thesis [3], which contains classical
as well as new results; see also Part IV of Santaló’s book [6] and the literature quoted there. For integral
geometry of convex bodies in Euclidean space, we recommend the recent survey by Schneider & Wieacker
[10], or Schneider & Weil [9].

In Section 1 we recall a recent result from spherical integral geometry, which provided motivation for the
present work. Our results are stated in Section 2. Sections 3 and 4 contain the proofs.
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1 A recent result from spherical integral geometry

We want to state two kinematic formulae for the support measures of spherically convex bodies. The relevant
notions can be introduced as follows (see [3]).

Let Sn be n-dimensional spherical space, i.e. the set of all unit vectors in Rn+1, equipped with the standard
inner product 〈·, ·〉. For x, y ∈ Sn we let [x, y]s := pos{x, y} ∩ Sn, where pos is the positive hull operation.
A subset K ⊂ Sn is, by definition, in the class Ks of all spherically convex bodies, if it is compact and if
[x, y]s ⊂ K for all x, y ∈ K. If K ∈ Ks, then also K∗ := {x ∈ Sn : 〈x, y〉 ≤ 0 for all y ∈ K} ∈ Ks; this body
is called the polar body of K. For K, K ′ ∈ Ks, the body (K∗ ∩K ′∗)∗ ∈ Ks equals the union of all sets [x, y]s

for x ∈ K, y ∈ K ′; we denote this body by K ∨K ′. We let NorK := {(x, u) ∈ K ×K∗ : 〈x, u〉 = 0} and call
the elements of NorK the support elements of K. For K ∈ Ks and j ∈ {0, . . . , n− 1}, the support measures
Θs

j(K, ·) can be defined as the uniquely determined Borel measures on Sn×Sn that are concentrated on NorK
and satisfy the Steiner-type relation

∫
Sn\(K∪K∗)

f dσ =
n−1∑
j=0

βjβn−j−1

π/2∫
0

cosj t sinn−j−1 t

∫
Sn×Sn

f(x cos t + u sin t) dΘs
j(K, (x, u))dt

for all σ-integrable functions f : Sn → R. Here σ is spherical Lebesgue measure on Sn and βn := σ(Sn).
We need some further notations. By ν we denote the normalized invariant measure on the group SOn+1

of all proper rotations in Rn+1, and for ϑ ∈ SOn+1 and subsets η, η′ ⊂ Sn × Sn we let

η ∧ ϑη′ :=
{
(x, u) ∈ Sn × Sn : u ∈ [u1, u2]s with u1, u2 ∈ Sn, (x, u1) ∈ η,

(ϑ−1x, ϑ−1u2) ∈ η′
}

,

η ∨ ϑη′ :=
{
(x, u) ∈ Sn × Sn : x ∈ [x1, x2]s with x1, x2 ∈ Sn, (x1, u) ∈ η,

(ϑ−1x2, ϑ
−1u) ∈ η′

}
.

The following result was proved in [3]; note that we consider sums over empty index sets to be zero. We
assume the measure Θs

j(K, ·) to be complete, i.e. its domain is extended to include the sets η1 ∪ η2, where η1

is a Borel set and η2 is a subset of a Borel set of Θs
j(K, ·)-measure zero.

Theorem 1. Let K, K ′ ∈ Ks and let η ⊂ NorK and η′ ⊂ NorK ′ be Borel sets. Let j ∈ {0, . . . , n − 1}.
Then we have ∫

SOn+1

Θs
j(K ∩ ϑK ′, η ∧ ϑη′) dν(ϑ) =

n−1∑
i=j+1

Θs
i (K, η)Θs

n+j−i(K
′, η′) , (1)

∫
SOn+1

Θs
j(K ∨ ϑK ′, η ∨ ϑη′) dν(ϑ) =

j−1∑
i=0

Θs
i (K, η)Θs

j−i−1(K
′, η′) . (2)

Each of these two formulae follows immediately from the respective other one since the support measures
satisfy Θs

j(K, η) = Θs
n−j−1(K

∗, η−1), where η−1 := {(u, x) : (x, u) ∈ η}. This theorem provided motivation
for the work [4], where analogs of (1) in Euclidean space were examined, as well as for the present paper, in
which we aim at establishing Euclidean counterparts for (2).
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2 Statement of results

We begin by fixing our notation; Schneider’s book [7] is our basic reference for the notions used below. By
K we denote the space of all convex bodies, i.e. non-empty, compact, convex subsets of Euclidean space
Rn. For K1, . . . ,Kn ∈ K, let V (K1, . . . ,Kn) be the mixed volume and S(K1, . . . ,Kn−1, ·) the mixed area
measure, which is a finite measure on the unit sphere Sn−1. (Unless stated otherwise, all measures will be
Borel measures, i.e. they are defined on the σ-algebra B(X) of all Borel sets of a topological space X.) For
K ∈ K, the support function of K is denoted by hK : Sn−1 → R, i.e. hK(u) = max{〈u, x〉 : x ∈ K}, where 〈·, ·〉
is the standard inner product in Rn. Mixed volumes and area measures are related by means of the equation

V (K1, . . . ,Kn) =
1
n

∫
Sn−1

hK1 dS(K2, . . . ,Kn, ·). (3)

We will abbreviate, e.g., V (K1, . . . ,K1,Kj+1, . . . ,Kn) by V (K[j],Kj+1, . . . ,Kn) and use analogous conven-
tions in the case of the mixed area measures. For j ∈ {0, . . . , n− 1}, the j-th area measure of a convex body
K is defined as

Sj(K, ·) := S(K[j], Bn[n− j − 1], ·),

where Bn is the unit ball in Rn. For K, K ′ ∈ K, we will write K ∨K ′ for the convex hull of the union K ∪K ′.
The support function of the convex body K ∨K ′ is given by

hK∨K′(u) = max{hK(u), hK′(u)}, u ∈ Sn−1.

We will repeatedly use the following fact: If h : Sn−1 → R is such that its positively homogeneous
extension of degree 1 to Rn is a convex function, then there is a unique convex body K with h = hK (see [7],
Theorem 1.7.1).

Our first results are translative formulas for the mixed volumes and for the mixed area measures concerning
the “convex hull operation”, where the integration is with respect to quite general measures on Rn. A measure
α on Rn is called homogeneous of degree δ > 0, if α(sA) = sδα(A) for all s ≥ 0 and all A ∈ B(Rn).

Theorem 2. Let α be a locally finite measure on Rn which is homogeneous of degree δ > 0. Define Z ∈ K
to be the convex body whose support function is

∫
Bn |〈·, x〉| dα(x). Let j ∈ {1, . . . , n} and Kj+1, . . . ,Kn ∈ K.

Let f : Sn−1 → R be continuous. Let a > 0. Then we have

lim
r→∞

1
rδ+1

∫
rBn

V (K ∨ (K ′ + x)[j],Kj+1, . . . ,Kn) dα(x)

=
1
2

j−1∑
i=0

V (K[i],K ′[j − i− 1],Kj+1, . . . ,Kn, Z),

lim
r→∞

1
rδ+1

∫
rBn

∫
Sn−1

f dS(K ∨ (K ′ + x)[j],Kj+1, . . . ,Kn−1, ·) dα(x)

=
1
2

j−1∑
i=0

∫
Sn−1

f dS(K[i],K ′[j − i− 1],Kj+1, . . . ,Kn−1, Z, ·),

uniformly for all K, K ′ ∈ K which are contained in the ball aBn.

The body Z in Theorem 2 is a zonoid, i.e. the limit (in the Hausdorff metric) of vector sums of line
segments. This follows from the proof of Theorem 2 and the fact that a convex body is a zonoid if its
support function has a representation

∫
Sn−1 |〈·, u〉| dρ(u) with a finite measure ρ on Sn−1, see Theorem 3.5.2

in Schneider [7].



TRANSLATIVE AND KINEMATIC INTEGRAL FORMULAE 4

Remark. Using the methods applied in the proof of Theorem 2, iterated versions can be obtained induc-
tively. We state the version for the mixed volumes. Let j ∈ {1, . . . , n}, k ∈ {1, . . . , j}, and let K0, . . . ,Kk,
Kj+1, . . . ,Kn ∈ K. Define a function g : (Rn)k → R by

g(x1, . . . , xk) := V (K0 ∨ (K1 + x1) ∨ · · · ∨ (Kk + xk)[j],Kj+1, . . . ,Kn),

where the operation “∨” is to be associative. Let α1, . . . , αk be locally finite measures on Rn such that αi is
homogeneous of degree δi > 0. Define Zi ∈ K by hZi

=
∫

Bn |〈·, x〉| dαi(x). Then we have

lim
r→∞

1
rδ1+···+δk+k

∫
rBn

· · ·
∫

rBn

g(x1, . . . , xk) dα1(x1) · · · dαk(xk)

=
1
2k

j−k∑
r0,...,rk=0

r0+···+rk=j−k

V (K0[r0], . . . ,Kk[rk],Kj+1, . . . ,Kn, Z1, . . . , Zk),

uniformly for all K0, . . . ,Kk ∈ K which are contained in a fixed ball. We will indicate the proof of this formula
in Section 3 after the proof of Theorem 2.

Using known rotational mean value formulae for the mixed volumes, we can deduce a kinematic version
from Theorem 2. Let SOn be the group of all proper rotations of Rn, and denote its invariant probability
measure by ν. The group Gn of all proper rigid motions consists of all maps gx,ϑ : Rn → Rn, defined by
gx,ϑ(y) = ϑ(y) + x, for x ∈ Rn, ϑ ∈ SOn. If α is a locally finite measure on Rn, we denote by µα the image
of the product measure α⊗ ν on Rn × SOn under the map (x, ϑ) 7→ gx,ϑ. By κn we denote the volume of the
unit ball in Rn. We state the result for the mixed volumes only and remark that, as above, iterated versions
can also be obtained.

Theorem 3. Under the assumptions of Theorem 2, we have

lim
r→∞

1
rδ+1

∫
{g∈Gn:gK′⊂rBn}

V (K ∨ gK ′[j],Kj+1, . . . ,Kn) dµα(g)

=
1

2κn

j−1∑
i=0

V (K[i], Bn[j − i− 1],Kj+1, . . . ,Kn, Z) V (K ′[j − i− 1], Bn[n− j + i + 1]),

uniformly for all K, K ′ ∈ K contained in the ball aBn.

Remark. One can obtain explicit formulas for even more general measures on the motion group. We
consider only the case of the volume functional V3 for convex bodies in R3. Let the assumptions of Theorem
2 be given. Let ν̃ be a finite measure on SO3. Denote by µα,ν̃ the image of the product measure α ⊗ ν̃ on
R3×SO3 under the map (x, ϑ) 7→ gx,ϑ. For arbitrary K ∈ K, let Rν̃K ∈ K be the body with support function∫

SO3
hϑK dν̃(ϑ). We denote the image of ν̃ under the map ϑ 7→ ϑ−1 by ν̃−1. We now deduce from Theorem 2

and Eq. (3) that

lim
r→∞

2
rδ+1

∫
{g∈G3:gK′⊂rB3}

V3(K ∨ gK ′) dµα,ν̃(g)

= V (K, K,Z) + V (K, Rν̃K ′, Z) + V (K ′,K ′, Rν̃−1Z).

If K ′ has interior points, then Minkowski’s theorem (see [7], Theorem 7.1.2) implies that there is a unique
convex body Tν̃K ′ whose second area measure is given by

∫
SO3

S2(ϑK ′, ·) dν̃(ϑ). It follows from (3) that

V (K ′,K ′, Rν̃−1Z) = V (Tν̃K ′, Tν̃K ′, Z).

By using the concept of mixed bodies (see, e.g., [7], p. 396, Note 7), the above formula could be extended to
higher dimensions in a less explicit form.
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Our next result is a generalization of a special case of Theorem 2.

Theorem 4. Let α be a measure on Rn which is homogeneous of degree n and has a density function with
respect to Lebesgue measure that is continuous on Rn\{0}. Define Z ∈ K to be the convex body whose support
function is

∫
Bn |〈·, x〉| dα(x). Let j ∈ {1, . . . , n− 1} and let Kj+1, . . . ,Kn−1 ∈ K. Let a > 0. Then we have

lim
r→∞

1
rn+1

∫
rBn

S(K ∨ (K ′ + x)[j],Kj+1, . . . ,Kn−1, ω) dα(x)

=
1
2

j−1∑
i=0

S(K[i],K ′[j − i− 1],Kj+1, . . . ,Kn−1, Z, ω),

uniformly for all ω ∈ B(Sn−1) and all K, K ′ ∈ K contained in the ball aBn.

Remark 1. The proof of Theorem 4 can be extended to give an iterated version. Let j ∈ {1, . . . , n − 1},
k ∈ {1, . . . , j}, and let K0, . . . ,Kk, Kj+1, . . . ,Kn−1 ∈ K. Define a function g : (Rn)k × B(Sn−1) → R by

g(x1, . . . , xk, ω) := S(K0 ∨ (K1 + x1) ∨ · · · ∨ (Kk + xk)[j],Kj+1, . . . ,Kn−1, ω).

For i ∈ {1, . . . , k}, let αi be a measure as in Theorem 4 and define Zi ∈ K by hZi =
∫

Bn |〈·, x〉| dαi(x). Then
we have

lim
r→∞

1
rk(n+1)

∫
rBn

· · ·
∫

rBn

g(x1, . . . , xk, ω) dα1(x1) · · · dαk(xk)

=
1
2k

j−k∑
r0,...,rk=0

r0+···+rk=j−k

S(K0[r0], . . . ,Kk[rk],Kj+1, . . . ,Kn−1, Z1, . . . , Zk, ω),

uniformly for all ω ∈ B(Sn−1) and all K0, . . . ,Kk ∈ K which are contained in a fixed ball.
Remark 2. The proof of Theorem 4 can also be modified to show the following variant. See Gardner [2]

for the notions we use in this Remark. Let T be compact with interior points and star shaped with respect
to 0, and let the radial function of T be continuous. Let ΓT be the centroid body of T , i.e. the convex body
with support function λn(T )−1

∫
T
|〈·, x〉| dλn(x), where λn is Lebesgue measure on Rn. Then we have

lim
r→∞

1
rλn(rT )

∫
rT

S(K ∨ (K ′ + x)[j],Kj+1, . . . ,Kn−1, ω) dλn(x)

=
1
2

j−1∑
i=0

S(K[i],K ′[j − i− 1],Kj+1, . . . ,Kn−1,ΓT, ω),

uniformly for all ω ∈ B(Sn−1) and all K, K ′ ∈ K which are contained in a fixed ball.

Our next theorem states a kinematic version of Theorem 4. If g = gx,ϑ ∈ Gn, we let g0 := ϑ ∈ SOn be
the rotational part of g.

Theorem 5. Under the assumptions of Theorem 4, we have

lim
r→∞

1
rn+1

∫
{g∈Gn:gK′⊂rBn}

S(K ∨ gK ′[j],Kj+1, . . . ,Kn−1, ω ∩ g0ω
′) dµα(g)

=
1

2nκn

j−1∑
i=0

S(K[i], Bn[j − i− 1],Kj+1, . . . ,Kn−1, Z, ω) Sj−i−1(K ′, ω′),
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uniformly for all ω, ω′ ∈ B(Sn−1) and all K, K ′ ∈ K contained in aBn.

Remark. If we put µ := µλn , then µ is a Haar measure on Gn. A special case of Theorem 5 now reads

lim
r→∞

1
rn+1

∫
{g∈Gn:gK′⊂rBn}

Sj(K ∨ gK ′, ω ∩ g0ω
′) dµ(g) =

κn−1

(n + 1)nκn

j−1∑
i=0

Si(K, ω)Sj−i−1(K ′, ω′).

This formula can be considered as the analog of a special case of (2) in Euclidean space.

We conclude this section with some concise comments on a possible extension of the formula stated in the
last Remark from the area measures to the support measures (or generalized curvature measures) of convex
bodies. To define these measures, let K ∈ K and let NorK be the set of all support elements of K, i.e. the set
of all pairs (x, u) ∈ Rn × Sn−1 where x is in the boundary bdK of K and u is an outer unit normal vector of
K at x. The support measures Θj(K, ·), j ∈ {0, . . . , n− 1}, are the unique measures on Rn × Sn−1 which are
concentrated on NorK and satisfy the Steiner-type relation

∫
Rn\K

f dλn =
n−1∑
j=0

(
n− 1

j

) ∞∫
0

∫
Rn×Sn−1

tn−j−1f(x + tu) dΘj(K, (x, u))dt

for all Lebesgue integrable f : Rn → R; compare Schneider [7], Theorem 4.2.1. We have Sj(K, ω) = Θj(K, Rn×
ω) for all Borel sets ω ⊂ Sn−1. We assume the measures Θj(K, ·) to be complete.

Next we define a law of composition between two subsets of Rn × Sn−1 which is adapted to the convex
hull operation for pairs of convex bodies. For η, η′ ⊂ Rn × Sn−1 and g ∈ Gn we let

η ∨ gη′ :=
{
(x, u) ∈ Rn × Sn−1 : x ∈ [x1, x2] with x1, x2 ∈ Rn, (x1, u) ∈ η,

(g−1x2, g
−1
0 u) ∈ η′

}
,

where [x1, x2] is the closed line segment with endpoints x1, x2. Again, we put µ := µλn . We want to state the
following conjecture:

Conjecture 1. Let j ∈ {1, . . . , n− 1} and let a > 0. Then we have

lim
r→∞

1
rn+1

∫
{g∈Gn:gK′⊂rBn}

Θj(K ∨ gK ′, η ∨ gη′) dµ(g) =
κn−1

(n + 1)nκn

j−1∑
i=0

Θi(K, η) Θj−i−1(K ′, η′),

uniformly for all K, K ′ ∈ K contained in aBn and for all Borel sets η ⊂ NorK, η′ ⊂ NorK ′.

The methods of the present paper, those of the work [4], and an application of Schneider’s local rotation
sum formula (see [7], Theorem 4.5.9) show that Conjecture 1 is true provided the following assertion about
the boundary structure of convex bodies can be shown to be true.

Conjecture 2. Let K, K ′ ∈ K. Then for µ-a.e. g ∈ Gn we have the following. For every x ∈ (bd(K ∨
gK ′))\(bdK ∪bdgK ′) there are unique points y ∈ bdK, z ∈ bdgK ′ such that x lies on the line segment [y, z].

This second conjecture was stated in a different but equivalent form in [3], p. 113. The argument sketched
in Section 2 of [4] shows that Conjecture 2 is true in dimension n = 3 (the case n = 2 can easily be verified).
Furthermore, a dualization of Theorem 2.2 in [4] can be used to show that Conjecture 2 is true in general
dimensions if one of the bodies K, K ′ is a polytope. Thus we can conclude that Conjecture 1 is true if n ≤ 3
and in general dimensions if one of the bodies K, K ′ is restricted to the class of all polytopes.

Theorem 2.2 in [4], mentioned above, relies on a result of Zalgaller [11]. If Conjecture 2 turns out to be
true, it will be a generalization of a result of Ivanov [5], who, like Zalgaller, used the methods developed by
Ewald et al. [1]. We do not know whether these methods can also be applied to prove Conjecture 2.
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3 Proofs of Theorems 2 and 3

We will use the following two lemmas. The first one is known, see Schneider & Weil [8], p. 308, Eq. (9.7), but
we will give an alternative proof. For x1, . . . , xk ∈ Rn, we denote by Dk(x1, . . . , xk) the k-dimensional volume
of the parallelepiped spanned by these vectors. If K ∈ K and if L is a linear subspace, we denote by K|L
the orthogonal projection of K onto L. In the proofs of Theorems 2 and 4 we will use only the case k = 1 of
this lemma. However, if one wants to modify the proof of Theorem 4 to show the iterated extension, one may
utilize the second part of Lemma 1 in the version stated below.

Lemma 1. Let k ∈ {1, . . . , n}. For i ∈ {1, . . . , k}, let ρi be a finite measure on Sn−1, and let Zi ∈ K be
the convex body with support function

∫
Sn−1 |〈·, v〉| dρi(v). Let K1, . . . ,Kn−k ∈ K. Then we have

n(n− 1) · · · (n− k + 1) V (K1, . . . ,Kn−k, Z1, . . . , Zk)

= 2k

∫
Sn−1

· · ·
∫

Sn−1

Dk(u1, . . . , uk)V L(K1|L, . . . , Kn−k|L) dρ1(u1) · · · dρk(uk),

where L is the (n − k)-subspace orthogonal to u1, . . . , uk (provided that Dk(u1, . . . , uk) > 0) and V L denotes
the mixed volume functional in L (if k = n, then V L ≡ 1). If k ≤ n− 1 and ω ∈ B(Sn−1), then

(n− 1) · · · (n− k) S(K1, . . . ,Kn−k−1, Z1, . . . , Zk, ω)

= 2k

∫
Sn−1

· · ·
∫

Sn−1

Dk(u1, . . . , uk)SL(K1|L, . . . , Kn−k−1|L, ω ∩ L) dρ1(u1) · · · dρk(uk),

where SL is the mixed area measure in the subspace L (if k = n − 1, then SL is the counting measure on
Sn−1 ∩ L).

Proof. The first equation can be shown by a straightforward induction on k, where (3), the Fubini theorem,
and the relation

V H(K1|H, . . . ,Kn−1|H) =
1
2

∫
Sn−1

|〈u, v〉| dS(K1, . . . ,Kn−1, v)

are used. Here K1, . . . ,Kn−1 are arbitrary convex bodies and H is a hyperplane through 0 with unit normal
vector u; see Schneider [7], p. 296, Eq. (5.3.32).

In the case k ≤ n− 1, a further application of (3) gives

(n− 1) · · · (n− k)
∫

Sn−1

hKn−k
dS(K1, . . . ,Kn−k−1, Z1, . . . , Zk, ·)

= 2k

∫
Sn−1

· · ·
∫

Sn−1

Dk(u1, . . . , uk)
∫

Sn−1∩L

hKn−k

dSL(K1|L, . . . , Kn−k−1|L, ·)dρ1(u1) · · · dρk(uk),

and since the set of all differences of support functions is dense in C(Sn−1) (see [7], Lemma 1.7.9), the
function hKn−k

can be replaced by an arbitrary continuous function. Now the uniqueness statement in Riesz’
representation theorem shows that it can also be replaced by the indicator function of a Borel set ω ⊂ Sn−1;
this gives the second equation of Lemma 1.

Below we will use the following notations. P denotes the class of all convex polytopes. For K ∈ K and
u ∈ Sn−1, F (K, u) := {x ∈ K : 〈x, u〉 = hK(u)} is the support set of K at u. The volume functional on K is
denoted by Vn. For K, K ′ ∈ K, K + K ′ is the Minkowski sum of these two bodies. The dimension of a convex
body K is denoted by dim K.
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Lemma 2. Let P, P ′ ∈ P and let U := {u ∈ Sn−1 : dim F (P + P ′, u) = n− 1}. Then

2 Vn(P ∨ P ′) = Vn(P ) + Vn(P ′) +
∑
u∈U

Vn(F (P, u) ∨ F (P ′, u)).

Proof. Let U1 := {u ∈ U : hP (u) > hP ′(u)}. We have

(F (P, u) ∨ F (P ′, u))\F (P ′, u) =
⋃

0<s≤1

F (sP + (1− s)P ′, u)

for all u ∈ U1 and
(P ∨ P ′)\P ′ =

⋃
0<s≤1

⋃
u∈U1

F (sP + (1− s)P ′, u),

where the union over s is disjoint. It follows that

(P ∨ P ′)\P ′ =
⋃

u∈U1

(F (P, u) ∨ F (P ′, u))\F (P ′, u).

Furthermore, for u, u′ ∈ U1, u 6= u′, the interiors of the sets F (P, u) ∨ F (P ′, u) and F (P, u′) ∨ F (P ′, u′) are
disjoint, since otherwise, for some s ∈ (0, 1), the relative interiors of the facets F (sP + (1 − s)P ′, u) and
F (sP +(1− s)P ′, u′) of sP +(1− s)P ′ would have non-empty intersection, which is impossible as these facets
do not coincide. We conclude

Vn((P ∨ P ′)\P ′) =
∑

u∈U1

Vn(F (P, u) ∨ F (P ′, u))

and analogously we get Vn((P ∨ P ′)\P ) =
∑

u∈U2
Vn(F (P, u) ∨ F (P ′, u)) where U2 := {u ∈ U : hP (u) <

hP ′(u)}. If u ∈ U with hP (u) = hP ′(u), then clearly dim(F (P, u)∨ F (P ′, u)) ≤ n− 1. Now the result follows.

In the proofs of Theorems 2 and 4 we will use the following notations. For a vector v 6= 0, the hyperplane
through 0 and orthogonal to v is denoted by v⊥. For K ∈ K and i ∈ {0, . . . , n}, let Vi(K) be the i-th intrinsic
volume. So if dim K = n, then 2Vn−1(K) is the surface area of K and if dim K = i, then Vi(K) is the
i-dimensional volume of K.

Proof of Theorem 2. Let the assumptions of Theorem 2 be given. We begin by showing that it suffices to
establish the relation

lim
r→∞

1
rδ+1

∫
rBn

Vn(K ∨ (K ′ + x)) dα(x) =
n

2

1∫
0

V (sK + (1− s)K ′[n− 1], Z) ds, (4)

where the limit is uniform for all K, K ′ ∈ K with K, K ′ ⊂ aBn.
So let us assume that this is true. Since hK∨K′ = max{hK , hK′} and hK+K′ = hK +hK′ for all K, K ′ ∈ K,

we have h(K∨K′)+K′′ = h(K+K′′)∨(K′+K′′) and thus (K∨K ′)+K ′′ = (K+K ′′)∨(K ′+K ′′) for all K, K ′,K ′′ ∈
K. Hence if we replace K and K ′ in (4) by K + tKn and K ′ + tKn, t ≥ 0, the additivity properties of the



TRANSLATIVE AND KINEMATIC INTEGRAL FORMULAE 9

mixed volume imply that

lim
r→∞

1
rδ+1

n∑
i=0

(
n

i

)
ti

∫
rBn

V (K ∨ (K ′ + x)[n− i],Kn[i]) dα(x)

= lim
r→∞

1
rδ+1

∫
rBn

Vn((K ∨ (K ′ + x)) + tKn) dα(x)

= lim
r→∞

1
rδ+1

∫
rBn

Vn((K + tKn) ∨ (K ′ + tKn + x)) dα(x)

=
n

2

1∫
0

V (s(K + tKn) + (1− s)(K ′ + tKn)[n− 1], Z) ds

=
n

2

1∫
0

V (sK + (1− s)K ′ + tKn[n− 1], Z) ds

=
n

2

n−1∑
i=0

(
n− 1

i

)
ti

1∫
0

V (sK + (1− s)K ′[n− i− 1],Kn[i], Z) ds

where the limits are uniform in K, K ′ ⊂ aBn. Comparison of the coefficients of t gives

lim
r→∞

1
rδ+1

∫
rBn

V (K ∨ (K ′ + x)[n− 1],Kn) dα(x)

=
n− 1

2

1∫
0

V (sK + (1− s)K ′[n− 2],Kn, Z) ds,

and repetition of this argument yields

lim
r→∞

1
rδ+1

∫
rBn

V (K ∨ (K ′ + x)[j],Kj+1, . . . ,Kn) dα(x)

=
j

2

1∫
0

V (sK + (1− s)K ′[j − 1],Kj+1, . . . ,Kn, Z) ds

=
j

2

j−1∑
i=0

(
j − 1

i

) 1∫
0

si(1− s)j−i−1ds V (K[i],K ′[j − i− 1],Kj+1, . . . ,Kn, Z)

=
1
2

j−1∑
i=0

V (K[i],K ′[j − i− 1],Kj+1, . . . ,Kn, Z),

uniformly for K, K ′ ⊂ aBn, where we used j
(
j−1

i

) ∫ 1

0
si(1 − s)j−i−1 ds = 1, which can be shown by i-fold

integration by parts. Now the first formula of Theorem 2 is deduced from (4).
Using (3), the above argument shows that (4) implies

lim
r→∞

1
rδ+1

∫
rBn

∫
Sn−1

hKn
dS(K ∨ (K ′ + x)[j],Kj+1, . . . ,Kn−1, ·) dα(x)

=
1
2

j−1∑
i=0

∫
Sn−1

hKn dS(K[i],K ′[j − i− 1],Kj+1, . . . ,Kn−1, Z, ·),
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uniformly for K, K ′ ⊂ aBn. As the continuous function f can be approximated arbitrarily closely, in the
maximum norm, by differences hKn − hK̃n

for Kn, K̃n ∈ K (see [7], Lemma 1.7.9), we can use the triangle
inequality to deduce that

lim
r→∞

1
rδ+1

∫
rBn

∫
Sn−1

f dS(K ∨ (K ′ + x)[j],Kj+1, . . . ,Kn−1, ·) dα(x)

=
1
2

j−1∑
i=0

∫
Sn−1

f dS(K[i],K ′[j − i− 1],Kj+1, . . . ,Kn−1, Z, ·),

uniformly for all K, K ′ ⊂ aBn. Now also the second relation of Theorem 2 is reduced to (4).
So our aim is to prove the relation (4). Since the right side of (4), as well as the left side for any fixed

r > 0, is continuous in K, K ′, it suffices to prove that for all a > 0 there is a c > 0 such that∣∣∣∣∣∣ 1
rδ+1

∫
rBn

Vn(P ∨ (P ′ + x)) dα(x)− n

2

1∫
0

V (sP + (1− s)P ′[n− 1], Z) ds

∣∣∣∣∣∣ ≤ c

r

for all r > 0 and all polytopes P, P ′ ∈ P which are contained in the ball aBn.
We will need a polar decomposition of the measure α, which can be achieved as follows. Define a finite

measure ρ on Sn−1 by

ρ(ω) := δ α({tx ∈ Rn : 0 ≤ t ≤ 1, x ∈ ω}), ω ∈ B(Sn−1),

and define a measure α̃ on Rn by

α̃(A) :=

∞∫
0

∫
Sn−1

tδ−11A(tv) dρ(v) dt,

where 1A denotes the indicator function of the Borel set A ∈ B(Rn). It follows from the local finiteness of α
that the spheres tSn−1, t ≥ 0, have α-measure zero. Therefore α and α̃ coincide on the sets {tx ∈ Rn : t1 ≤
t ≤ t2, x ∈ ω}, where 0 ≤ t1 < t2 and ω ∈ B(Sn−1). Since Rn is the union of an increasing sequence of such
sets and since they are closed under intersections and generate B(Rn), it follows that α̃ = α. We therefore
have ∫

Rn

g dα =

∞∫
0

∫
Sn−1

tδ−1g(tv) dρ(v)dt

for all measurable functions g ≥ 0. In particular

∫
Bn

|〈·, x〉| dα(x) =

1∫
0

∫
Sn−1

tδ−1|〈·, tv〉| dρ(v)dt =
1

δ + 1

∫
Sn−1

|〈·, v〉| dρ(v),

so if Z ′ ∈ K is the body with support function
∫

Sn−1 |〈·, v〉| dρ(v), then Z = 1
δ+1Z ′.

For the following, let a > 0 and let P, P ′ ∈ P with P, P ′ ⊂ aBn. Let r > 0. Define

U := {u ∈ Sn−1 : dim F (P + P ′, u) = n− 1}.
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According to Lemma 1 we have

n

2

1∫
0

V (sP + (1− s)P ′[n− 1], Z) ds

=
n

2(δ + 1)

1∫
0

V (sP + (1− s)P ′[n− 1], Z ′) ds

=
1

δ + 1

1∫
0

∫
Sn−1

Vn−1((sP + (1− s)P ′)|v⊥) dρ(v)ds

=
1

2(δ + 1)

∫
Sn−1

1∫
0

∑
u∈U

Vn−1(F (sP + (1− s)P ′, u)|v⊥) dsdρ(v)

=
1

2(δ + 1)

∫
Sn−1

1∫
0

∑
u∈U

|〈u, v〉|Vn−1(F (sP + (1− s)P ′, u)) dsdρ(v)

=
1

2rδ+1

r∫
0

∫
Sn−1

1∫
0

tδ−1
∑
u∈U

|〈u, tv〉|Vn−1(F (sP + (1− s)P ′, u)) dsdρ(v)dt. (5)

On the other hand, we infer from Lemma 2 that

1
rδ+1

∫
rBn

Vn(P ∨ (P ′ + x)) dα(x)

=
1

2rδ+1

∫
rBn

(
Vn(P ) + Vn(P ′) +

∑
u∈U

Vn(F (P, u) ∨ (F (P ′, u) + x))
)

dα(x)

=
α(Bn)(Vn(P ) + Vn(P ′))

2r

+
1

2rδ+1

r∫
0

∫
Sn−1

tδ−1
∑
u∈U

Vn(F (P, u) ∨ (F (P ′, u) + tv)) dρ(v)dt. (6)

Let us show the following assertion: If K1 and K2 are convex bodies which are contained in a single
hyperplane, then

Vn(K1 ∨ (K2 + x)) = Vn(K1|x⊥ ∨ (K2|x⊥ + x))

for all x 6= 0. We can assume dim(K1 +K2) = n−1, 0 ∈ aff(K1 +K2) and x /∈ aff(K1 +K2), where aff denotes
the affine hull operation. Choose a basis {y1, . . . , yn−1} in the linear subspace aff(K1 + K2). The linear map
that fixes x and maps each yi to yi|x⊥ has determinant one and maps K1∨(K2 +x) onto K1|x⊥∨(K2|x⊥+x).
This shows the above equation.

For each u ∈ U , there is a yu ∈ 2aBn such that F (P, u) and F (P ′, u) − yu are contained in a single
hyperplane. What we have shown above implies that

Vn(F (P, u) ∨ (F (P ′, u) + tv)) = Vn(F (P, u) ∨ (F (P ′, u)− yu + tv + yu))
= Vn(F (P, u)|(tv + yu)⊥ ∨ ((F (P ′, u)− yu)|(tv + yu)⊥ + tv + yu))
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for all u ∈ U , v ∈ Sn−1, t ≥ 0 with tv 6= −yu. Now Cavalieri’s principle shows that

Vn(F (P, u) ∨ (F (P ′, u) + tv))

=

‖tv+yu‖∫
0

Vn−1

(( s

‖tv + yu‖
F (P, u) +

‖tv + yu‖ − s

‖tv + yu‖
(F (P ′, u)− yu)

)∣∣∣(tv + yu)⊥
)

ds

= ‖tv + yu‖
1∫

0

Vn−1((sF (P, u) + (1− s)F (P ′, u))|(tv + yu)⊥) ds

= |〈u, tv + yu〉|
1∫

0

Vn−1(sF (P, u) + (1− s)F (P ′, u)) ds

= |〈u, tv + yu〉|
1∫

0

Vn−1(F (sP + (1− s)P ′, u)) ds (7)

for all u ∈ U , v ∈ Sn−1, t ≥ 0 with tv 6= −yu. Both the first and the last term equal zero if tv = −yu. Because
of ∣∣∣|〈u, tv + yu〉| − |〈u, tv〉|

∣∣∣ ≤ |〈u, yu〉| ≤ ‖yu‖ ≤ 2a

for all u ∈ U , v ∈ Sn−1, t ≥ 0, and since Vn−1(sP + (1− s)P ′) ≤ Vn−1(2aBn) for 0 ≤ s ≤ 1, we get from (5),
(6), and (7) ∣∣∣∣∣∣ 1

rδ+1

∫
rBn

Vn(P ∨ (P ′ + x)) dα(x)− n

2

1∫
0

V (sP + (1− s)P ′[n− 1], Z) ds

∣∣∣∣∣∣
≤ c1

r
+

1
2rδ+1

r∫
0

∫
Sn−1

1∫
0

tδ−1
∑
u∈U

Vn−1(F (sP + (1− s)P ′, u))

∣∣∣|〈u, tv + yu〉| − |〈u, tv〉|
∣∣∣ dsdρ(v)dt

≤ c1

r
+

c2

r

1∫
0

Vn−1(sP + (1− s)P ′) ds ≤ c

r

with suitable numbers c, c1, c2 > 0, which depend on a, but not on P or P ′. This is what we wanted to show.

In the following we indicate how the iterated formula stated in the Remark after Theorem 2 can be
obtained. It is sufficient to show that for all a > 0 there is a c > 0 so that∣∣∣∣∣ 1

rδ1+···+δk+k

∫
rBn

· · ·
∫

rBn

Vn(P0 ∨ (P1 + x1) ∨ · · · ∨ (Pk + xk)) dα1(x1) · · · dαk(xk)

− 1
2k

n−k∑
r0,...,rk=0

r0+···+rk=n−k

V (P0[r0], . . . , Pk[rk], Z1, . . . , Zk)

∣∣∣∣∣ ≤ c

r

for all polytopes P0, . . . , Pk ⊂ aBn and all r ≥ 1. Let k > 1 and assume that the corresponding assertion is true
for all smaller positive integers. Let a > 0, r ≥ 1, and let P0, . . . , Pk ⊂ aBn be polytopes. For x1, . . . , xk−1 ∈ Rn
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let U(x1, . . . , xk−1) := {u ∈ Sn−1 : dim F ((P0∨(P1+x1)∨· · ·∨(Pk−1+xk−1))+Pk, u) = n−1}. The inductive
hypothesis and Lemma 2 imply that

1
rδ1+···+δk+k

∣∣∣∣∣
∫

rBn

· · ·
∫

rBn

Vn(P0 ∨ (P1 + x1) ∨ · · · ∨ (Pk + xk)) dα1(x1) · · · dαk(xk)

− 1
2

∫
rBn

· · ·
∫

rBn

∑
u∈U(x1,...,xk−1)

Vn(F (P0 ∨ (P1 + x1) ∨ · · · ∨ (Pk−1 + xk−1), u) ∨ (F (Pk, u) + xk))

dα1(x1) · · · dαk(xk)

∣∣∣∣∣ ≤ c1

r
,

where here and below c1, . . . , c4 denote suitable positive numbers which are independent of P0, . . . , Pk. It can
be shown as in the proof of Theorem 2 that∣∣∣∣∣ 1

rδk+1

∫
rBn

∑
u∈U(x1,...,xk−1)

Vn(F (P0 ∨ · · · ∨ (Pk−1 + xk−1), u) ∨ (F (Pk, u) + xk)) dαk(xk)

− 1
δk + 1

∫
Sn−1

1∫
0

Vn−1((s(P0 ∨ (P1 + x1) ∨ · · · ∨ (Pk−1 + xk−1)) + (1− s)Pk)|v⊥) dsdρk(v)

∣∣∣∣∣
≤ c2

r
Vn−1(2aBn ∨ (2aBn + x1) ∨ · · · ∨ (2aBn + xk−1)) ≤ c3r

k−2

for all x1, . . . , xk−1 ∈ rBn, where ρk is the measure on Sn−1 corresponding to αk (see the above proof). We
can now apply Lemma 1 to show that∣∣∣∣∣ 1

rδ1+···+δk+k

∫
rBn

· · ·
∫

rBn

Vn(P0 ∨ (P1 + x1) ∨ · · · ∨ (Pk + xk)) dα1(x1) · · · dαk(xk)

− 1
2rδ1+···+δk−1+k−1

∫
rBn

· · ·
∫

rBn

n−1∑
i=0

V (P0 ∨ · · · ∨ (Pk−1 + xk−1)[i], Pk[n− i− 1], Zk) dα1(x1) · · · dαk−1(xk−1)

∣∣∣∣∣ ≤ c4

r
.

Now the assertion can be deduced from the inductive hypothesis.

Proof of Theorem 3. Let the assumptions of Theorem 2 be given, and let K, K ′ ∈ K with K, K ′ ⊂ aBn.
For all ϑ ∈ SOn, r > 0, and x ∈ Rn, we have the implications

x ∈ rBn =⇒ ϑK ′ + x ⊂ (r + a)Bn,

ϑK ′ + x ⊂ (r + a)Bn =⇒ x ∈ (r + 2a)Bn.

Therefore

1
rδ+1

∫
rBn

∫
SOn

V (K ∨ (ϑK ′ + x)[j],Kj+1, . . . ,Kn) dν(ϑ)dα(x)

≤ 1
rδ+1

∫
{g∈Gn:gK′⊂(r+a)Bn}

V (K ∨ gK ′[j],Kj+1, . . . ,Kn) dµα(g)

≤ 1
rδ+1

∫
(r+2a)Bn

∫
SOn

V (K ∨ (ϑK ′ + x)[j],Kj+1, . . . ,Kn) dν(ϑ)dα(x).
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Equation (5.3.25) on p. 294 in Schneider [7] gives∫
SOn

V (K[i], ϑK ′[j − i− 1],Kj+1, . . . ,Kn, Z) dν(ϑ)

=
1
κn

V (K[i], Bn[j − i− 1],Kj+1, . . . ,Kn, Z) V (K ′[j − i− 1], Bn[n− j + i + 1]),

i ∈ {0, . . . , j−1}. We now deduce from Fubini’s theorem, Theorem 2, and the dominated convergence theorem
that both the first and the third term in the above inequalities converge for r →∞ to

1
2κn

j−1∑
i=0

V (K[i], Bn[j − i− 1],Kj+1, . . . ,Kn, Z) V (K ′[j − i− 1], Bn[n− j + i + 1]),

uniformly for K, K ′ ⊂ aBn. Thus the second term has the same limit, and Theorem 3 follows.

4 Proofs of Theorems 4 and 5

In the proof of Theorem 4 we will make use of the following fact. Let P be an n-dimensional polytope and
define Fi(P ), i ∈ {0, . . . , n− 1}, to be the set of all i-dimensional faces of P . Then

Sn−1(P, ω) =
∑

F∈Fn−1(P )

Vn−1(F )1ω(uF ), (8)

where uF is the outer unit normal vector of P at F .

Proof of Theorem 4. Let the assumptions of Theorem 4 be given. The measurability of the integrand on
the left hand side, for any fixed r > 0, can be proved by standard methods of integration theory, see, e.g.,
Hilfssatz 7.2.2 in Schneider & Weil [9].

We will use the concept of the total variation norm ‖µ‖ of a finite signed measure µ on Sn−1. We
have ‖µ‖ = sup{

∫
Sn−1 f dµ : f ∈ C(Sn−1), ‖f‖∞ ≤ 1}, where ‖f‖∞ denotes the maximum norm of f , and

‖µ‖ ≤ 2 supω∈B(Sn−1) |µ(ω)| ≤ 2‖µ‖. It can be seen as in the proof of Theorem 2 that it is sufficient to show
that

lim
r→∞

1
rn+1

∫
rBn

Sn−1(K ∨ (K ′ + x), ·) dα(x) =
n− 1

2

1∫
0

S(sK + (1− s)K ′[n− 2], Z, ·) ds,

where the limit is in the sense of the total variation norm and uniform in K, K ′ ⊂ aBn. Since the right side,
as well as the left side for any fixed r > 0, are weakly continuous in K, K ′ ∈ K, it suffices to show that for all
ε > 0 and all a > 0, there is an r0 > 0 such that∣∣∣∣∣ 1

rn+1

∫
rBn

Sn−1(P ∨ (P ′ + x), ω) dα(x)

− n− 1
2

1∫
0

S(sP + (1− s)P ′[n− 2], Z, ω) ds

∣∣∣∣∣ ≤ ε (9)

for all r ≥ r0, all ω ∈ B(Sn−1), and all n-dimensional polytopes P, P ′ ∈ P which are contained in aBn. For
the following, assume that ε and a are given, and let P, P ′ ∈ P be n-dimensional polytopes with P, P ′ ⊂ aBn

and ω ∈ B(Sn−1).
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Let f : Rn\{0} → R be the continuous density of α with respect to Lebesgue measure λn. Again as in the
proof of Theorem 2, it follows that

α(A) =

∞∫
0

∫
Sn−1

tn−11A(tv)f(v) dσ(v)dt, A ∈ B(Rn),

where σ is spherical Lebesgue measure on Sn−1, and that f(tv) = f(v) for all v ∈ Sn−1, t > 0. If Z ′ ∈ K has
support function

∫
Sn−1 |〈·, v〉|f(v) dσ(v), then Z = 1

n+1Z ′.
Let us define

F := {(F, F ′) ∈ F∗(P )×F∗(P ′) : F + F ′ ∈ Fn−2(P + P ′)},

where F∗(P ) is the set of all non-empty faces of P , and for (F, F ′) ∈ F let

AF,F ′ := {x ∈ Rn : F ∨ (F ′ + x) is a facet of P ∨ (P ′ + x), and its outer
unit normal vector is contained in ω},

BF,F ′ := {v ∈ Sn−1 : (F + F ′)|v⊥ is a facet of (P + P ′)|v⊥, and its outer unit
normal vector (in the subspace v⊥) is contained in ω}

(we do not indicate the dependence on P, P ′ and ω, since these remain fixed in the argument below). Let
further

C := {x ∈ Rn : for each facet G of P ∨ (P ′ + x) which is not a facet of P

or P ′ + x, we have (G ∩ P ) + ((G− x) ∩ P ′) ∈ Fn−2(P + P ′)},
D := {v ∈ Sn−1 : v is not parallel to a segment in the boundary of P + P ′}.

The following facts will be used below.

(a) For x ∈ Rn, each facet of P ∨ (P ′ + x) which is not a facet of P or P ′ + x is of the form F ∨ (F ′ + x),
where F ∈ F∗(P ), F ′ ∈ F∗(P ′).

(b) Let F ∈ F∗(P ), F ′ ∈ F∗(P ′). If the set {x ∈ Rn : F ∨ (F ′ + x) ∈ Fn−1(P ∨ (P ′ + x))} has positive
Lebesgue measure, then (F, F ′) ∈ F .

(c) λn(Rn\C) = 0.

(d) If x ∈ C and if (F, F ′), (F̃ , F̃ ′) are distinct members of F such that both F ∨ (F ′ +x) and F̃ ∨ (F̃ ′ +x)
are facets of P ∨ (P ′ + x), then F ∨ (F ′ + x) 6= F̃ ∨ (F̃ ′ + x).

(e) σ(Sn−1\D) = 0.

(f) If v ∈ D and if (F, F ′), (F̃ , F̃ ′) are distinct members of F such that both (F + F ′)|v⊥ and (F̃ + F̃ ′)|v⊥
are facets of (P + P ′)|v⊥, then (F + F ′)|v⊥ 6= (F̃ + F̃ ′)|v⊥.

(g) Let (F, F ′) ∈ F , y ∈ Rn with dim aff(F ∪ (F ′ − y)) = n − 2, v ∈ D, and t > 0. Then we have the
equivalence

v ∈ BF,F ′ ⇐⇒ tv − y ∈ AF,F ′ .

Let us briefly verify these assertions. For (a), let x ∈ Rn and let G be a facet of P ∨ (P ′ + x) which is not a
facet of P or P ′+x. Let F := G∩P , F ′ := (G−x)∩P ′. Then G = F ∨ (F ′+x) and F ∈ F∗(P ), F ′ ∈ F∗(P ′).
For (b), let F ∈ F∗(P ), F ′ ∈ F∗(P ′) and let M(F, F ′) := {x ∈ Rn : F ∨ (F ′ + x) ∈ Fn−1(P ∨ (P ′ + x))}. If
dim(F +F ′) < n−2, then M(F, F ′) = ∅. If dim(F +F ′) = n−1, then M(F, F ′) is contained in a hyperplane.
If dim(F + F ′) = n − 2 and F + F ′ is not a face of P + P ′, then M(F, F ′) is contained in the union of all
M(F̃ , F̃ ′) where (F̃ , F̃ ′) ∈ F∗(P ) × F∗(P ′) with dim(F̃ + F̃ ′) = n − 1. For (c), let x ∈ Rn\C. Then there
is a G ∈ Fn−1(P ∨ (P ′ + x))\(Fn−1(P ) ∪ Fn−1(P ′ + x)) with (G ∩ P ) + ((G − x) ∩ P ′) ∈ Fn−1(P + P ′).
It follows from (b) that the set of all such x has Lebesgue measure zero. For (d), let x ∈ C and let G ∈
Fn−1(P ∨(P ′+x))\(Fn−1(P )∪Fn−1(P ′+x)). Then F := G∩P and F ′ := (G−x)∩P ′ define the unique pair
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(F, F ′) ∈ F with G = F∨(F ′+x). This proves (d). For (e), note that Sn−1\D equals the union of finitely many
great subspheres of Sn−1. For (f), let the assumptions be given and assume (F +F ′)|v⊥ = (F̃ + F̃ ′)|v⊥. Then
clearly v /∈ D, a contradiction. For (g), let the assumptions be given. Clearly both conditions are equivalent
to the existence of a common supporting hyperplane H of P and P ′ − y which is parallel to v and satisfies
H ∩ P = F , (H + y) ∩ P ′ = F ′.

From (a) – (d), the fact that α is absolutely continuous with respect to λn, and (8), we get

1
rn+1

∣∣∣∣∣∣
∫

rBn

Sn−1(P ∨ (P ′ + x), ω) dα(x)−
∑

(F,F ′)∈F

∫
rBn

1AF,F ′ (x)Vn−1(F ∨ (F ′ + x)) dα(x)

∣∣∣∣∣∣
≤ 2

rn+1

∫
rBn

(
Vn−1(P ) + Vn−1(P ′)

)
dα(x) ≤ c1

r
(10)

for all r > 0, where here and below c1, c2, . . . are some positive numbers depending only on a and α. It follows
from Lemma 1, Eq. (8), (e), and (f) that

n− 1
2

1∫
0

S(sP + (1− s)P ′[n− 2], Z, ω) ds

=
n− 1

2(n + 1)

1∫
0

S(sP + (1− s)P ′[n− 2], Z ′, ω) ds

=
1

n + 1

∫
Sn−1

1∫
0

Sv⊥

n−2((sP + (1− s)P ′)|v⊥, ω ∩ v⊥)f(v) dsdσ(v)

=
1

n + 1

∫
Sn−1

1∫
0

∑
(F,F ′)∈F

1BF,F ′ (v)Vn−2((sF + (1− s)F ′)|v⊥)f(v) dsdσ(v). (11)

For each pair (F, F ′) ∈ F we can choose a vector yF,F ′ ∈ 2aBn such that dim aff(F ∪ (F ′ − yF,F ′)) = n − 2.
As in the proof of Theorem 2, we have for all x 6= 0

Vn−1(F ∨ (F ′ − yF,F ′ + x)) = Vn−1(F |x⊥ ∨ (((F ′ − yF,F ′)|x⊥) + x)).
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We thus get from (e) for all (F, F ′) ∈ F and all r > 0∫
rBn−yF,F ′

1AF,F ′ (x)Vn−1(F ∨ (F ′ + x)) dα(x)

=
∫

rBn

1AF,F ′ (x− yF,F ′)Vn−1(F ∨ (F ′ − yF,F ′ + x))f(x− yF,F ′) dλn(x)

=

r∫
0

∫
Sn−1

tn−11AF,F ′ (tv − yF,F ′)Vn−1(F ∨ (F ′ − yF,F ′ + tv))f(tv − yF,F ′) dσ(v)dt

=

r∫
0

∫
Sn−1

tn−11BF,F ′ (v)Vn−1(F |v⊥ ∨ (((F ′ − yF,F ′)|v⊥) + tv))f(tv − yF,F ′) dσ(v)dt

=

r∫
0

∫
Sn−1

tn−11BF,F ′ (v)

t∫
0

Vn−2

((s

t
F +

t− s

t
(F ′ − yF,F ′)

)∣∣∣v⊥)
ds f(tv − yF,F ′) dσ(v)dt

=

r∫
0

∫
Sn−1

tn1BF,F ′ (v)

1∫
0

Vn−2((sF + (1− s)F ′)|v⊥) ds f(tv − yF,F ′) dσ(v)dt. (12)

Since the symmetric difference rBn4 (rBn− yF,F ′) is contained in R := ((r + 2a)Bn\(r− 2a)Bn)− yF,F ′ for
all r ≥ 2a, we can use (12) and (11) for f ≡ 1 to obtain

1
rn+1

∑
(F,F ′)∈F

∣∣∣∣∣
∫

rBn

1AF,F ′ (x)Vn−1(F ∨ (F ′ + x)) dα(x)

−
∫

rBn−yF,F ′

1AF,F ′ (x)Vn−1(F ∨ (F ′ + x)) dα(x)

∣∣∣∣∣
≤ 1

rn+1

∑
(F,F ′)∈F

∫
R

1AF,F ′ (x)Vn−1(F ∨ (F ′ + x)) dα(x)

=
1

rn+1

∑
(F,F ′)∈F

r+2a∫
r−2a

∫
Sn−1

tn1BF,F ′ (v)

×
1∫

0

Vn−2((sF + (1− s)F ′)|v⊥) ds f(tv − yF,F ′) dσ(v)dt

≤ ‖f‖∞
rn+1

r+2a∫
r−2a

tn dt (n− 1)κn−1

1∫
0

S(sP + (1− s)P ′[n− 2], Bn, Sn−1) ds

≤ ‖f‖∞
rn+1

r+2a∫
r−2a

tn dt (n− 1)κn−1nV (2aBn[n− 2], Bn[2]) ≤ c2

r
(13)

for all r ≥ 2a. Since f is uniformly continuous on Sn−1 and positively homogeneous of degree 0, we deduce
from ‖yF,F ′‖ ≤ 2a for all (F, F ′) ∈ F that for all ε′ > 0 there is a t0 > 0 such that

|f(tv − yF,F ′)− f(v)| ≤ ε′
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for all v ∈ Sn−1, (F, F ′) ∈ F and all t ≥ t0. Now (10) – (13) and the triangle inequality imply that∣∣∣∣∣∣ 1
rn+1

∫
rBn

Sn−1(P ∨ (P ′ + x), ω) dα(x)− n− 1
2

1∫
0

S(sP + (1− s)P ′[n− 2], Z, ω) ds

∣∣∣∣∣∣
≤ c1 + c2

r
+

1
rn+1

∑
(F,F ′)∈F

r∫
0

∫
Sn−1

tn1BF,F ′ (v)

1∫
0

Vn−2((sF + (1− s)F ′)|v⊥) ds ×

× |f(tv − yF,F ′)− f(v)| dσ(v)dt

≤ c1 + c2

r
+

c3t
n+1
0

rn+1
+ c4ε

′

for all r ≥ 2a, where t0 > 0 is chosen according to ε′ > 0. If we let ε′ be small enough, we can find an r0 ≥ 2a
so that the above sum does not exceed ε for all r ≥ r0. Thus (9) is proven and Theorem 4 is established.

Proof of Theorem 5. Theorem 5 is deduced from Theorem 4 in the same way as Theorem 3 was derived
from Theorem 2. This time we have to use the rotation sum formula∫

SOn

S(K[i], ϑK ′[j − i− 1],Kj+1, . . . ,Kn−1, Z, ω ∩ ϑω′) dν(ϑ)

=
1

nκn
S(K[i], Bn[j − i− 1],Kj+1, . . . ,Kn−1, Z, ω) Sj−i−1(K ′, ω′),

i ∈ {0, . . . , j − 1}, see Schneider [7], p. 295, Eq. (5.3.28).
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